Ice sheet influence on atmospheric circulation explains the patterns of Pleistocene alpine glacier records in North America

2020 ◽  
Vol 534 ◽  
pp. 116115 ◽  
Author(s):  
Joseph P. Tulenko ◽  
Marcus Lofverstrom ◽  
Jason P. Briner
2020 ◽  
Vol 33 (3) ◽  
pp. 847-865 ◽  
Author(s):  
B. Yu ◽  
H. Lin ◽  
V. V. Kharin ◽  
X. L. Wang

AbstractThe interannual variability of wintertime North American surface temperature extremes and its generation and maintenance are analyzed in this study. The leading mode of the temperature extreme anomalies, revealed by empirical orthogonal function (EOF) analyses of December–February mean temperature extreme indices over North America, is characterized by an anomalous center of action over western-central Canada. In association with the leading mode of temperature extreme variability, the large-scale atmospheric circulation features an anomalous Pacific–North American (PNA)-like pattern from the preceding fall to winter, which has important implications for seasonal prediction of North American temperature extremes. A positive PNA pattern leads to more warm and fewer cold extremes over western-central Canada. The anomalous circulation over the PNA sector drives thermal advection that contributes to temperature anomalies over North America, as well as a Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomaly pattern in the midlatitude North Pacific. The PNA-like circulation anomaly tends to be supported by SST warming in the tropical central-eastern Pacific and a positive synoptic-scale eddy vorticity forcing feedback on the large-scale circulation over the PNA sector. The leading extreme mode–associated atmospheric circulation patterns obtained from the observational and reanalysis data, together with the anomalous SST and synoptic eddy activities, are reasonably well simulated in most CMIP5 models and in the multimodel mean. For most models considered, the simulated patterns of atmospheric circulation, SST, and synoptic eddy activities have lower spatial variances than the corresponding observational and reanalysis patterns over the PNA sector, especially over the North Pacific.


2015 ◽  
Vol 11 (10) ◽  
pp. 1467-1490 ◽  
Author(s):  
P. Beghin ◽  
S. Charbit ◽  
C. Dumas ◽  
M. Kageyama ◽  
C. Ritz

Abstract. It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents–Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents–Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the altitude of the American ice sheet leads to less total precipitation and snowfall and to colder temperatures over both the Scandinavian and the Barents and Kara sea sectors. We then compute the resulting annual surface mass balance over the Fennoscandian region from the simulated temperature and precipitation fields used to force an ice-sheet model. It clearly appears that the SMB is dominated by the ablation signal. In response to the summer cooling induced by the American ice-sheet albedo, high positive SMB values are obtained over the Eurasian region, leading thus to the growth of an ice sheet. On the contrary, the gradual increase of the American ice-sheet altitude induces more ablation over the Eurasian sector, hence limiting the growth of Fennoscandia. To test the robustness of our results with respect to the Eurasian ice sheet state, we carried out two additional LMDZ experiments with new boundary conditions involving both the American (flat or full LGM) and high Eurasian ice sheets. The most striking result is that the Eurasian ice sheet is maintained under full-LGM North American ice-sheet conditions, but loses ~ 10 % of its mass compared to the case in which the North American ice sheet is flat. These new findings qualitatively confirm the conclusions from our first series of experiments and suggest that the development of the Eurasian ice sheet may have been slowed down by the growth of the American ice sheet, offering thereby a new understanding of the evolution of Northern Hemisphere ice sheets throughout glacial–interglacial cycles.


2016 ◽  
Vol 29 (20) ◽  
pp. 7345-7364 ◽  
Author(s):  
Randal D. Koster ◽  
Yehui Chang ◽  
Hailan Wang ◽  
Siegfried D. Schubert

Abstract A series of stationary wave model (SWM) experiments are performed in which the boreal summer atmosphere is forced, over a number of locations in the continental United States, with an idealized diabatic heating anomaly that mimics the atmospheric heating associated with a dry land surface. For localized heating within a large portion of the continental interior, regardless of the specific location of this heating, the spatial pattern of the forced atmospheric circulation anomaly (in terms of 250-hPa eddy streamfunction) is largely the same: a high anomaly forms over west-central North America and a low anomaly forms to the east. In supplemental atmospheric general circulation model (AGCM) experiments, similar results are found; imposing soil moisture dryness in the AGCM in different locations within the U.S. interior tends to produce the aforementioned pattern, along with an associated near-surface warming and precipitation deficit in the center of the continent. The SWM-based and AGCM-based patterns generally agree with composites generated using reanalysis and precipitation gauge data. The AGCM experiments also suggest that dry anomalies imposed in the lower Mississippi River valley have remote surface impacts of particularly large spatial extent, and a region along the eastern half of the U.S.–Canadian border is particularly sensitive to dry anomalies in a number of remote areas. Overall, the SWM and AGCM experiments support the idea of a positive feedback loop operating over the continent: dry surface conditions in many interior locations lead to changes in atmospheric circulation that act to enhance further the overall dryness of the continental interior.


Author(s):  
Scott A. Elias

Present-day environments cannot be completely understood without knowledge of their history since the last ice age. Paleoecological studies show that the modern ecosystems did not spring full-blown onto the Rocky Mountain region within the last few centuries. Rather, they are the product of a massive reshuffling of species that was brought about by the last ice age and indeed continues to this day. Chronologically, this chapter covers the late Quaternary Period: the last 25,000 years. During this interval, ice sheets advanced southward, covering Canada and much of the northern tier of states in the United States. Glaciers crept down from mountaintops to fill high valleys in the Rockies and Sierras. The late Quaternary interval is important because it bridges the gap between the ice-age world and modern environments and biota. It was a time of great change, in both physical environments and biological communities. The Wisconsin Glaciation is called the Pinedale Glaciation in the Rocky Mountain region (after terminal moraines near the town of Pinedale, Wyoming; see chapter 4). The Pinedale Glaciation began after the last (Sangamon) Interglaciation, perhaps 110,000 radiocarbon years before present (yr BP), and included at least two major ice advances and retreats. These glacial events took different forms in different regions. The Laurentide Ice Sheet covered much of northeastern and north-central North America, and the Cordilleran Ice Sheet covered much of northwestern North America. The two ice sheets covered more than 16 million km2 and contained one third of all the ice in the world’s glaciers during this period. The history of glaciation is not as well resolved for the Colorado Front Range region as it is for regions farther north. For instance, although a chronology of three separate ice advances has been established for the Teton Range during Pinedale times, in northern Colorado we know only that there were earlier and later Pinedale ice advances. We do not know when the earlier advance (or multiple advances) took place. However, based on geologic evidence (Madole and Shroba 1979), the early Pinedale glaciation was more extensive than the late Pinedale was.


2012 ◽  
Vol 25 (19) ◽  
pp. 6477-6495 ◽  
Author(s):  
Qi Hu ◽  
Song Feng

Abstract Interannual and multidecadal time-scale anomalies in sea surface temperatures (SST) of the North Atlantic and North Pacific Oceans could result in persistent atmospheric circulation and regional precipitation anomalies for years to decades. Understanding the processes that connect such SST forcings with circulation and precipitation anomalies is thus important for understanding climate variations and for improving predictions at interannual–decadal time scales. This study focuses on the interrelationship between the Atlantic multidecadal oscillation (AMO) and El Niño–Southern Oscillation (ENSO) and their resulting interannual to multidecadal time-scale variations in summertime precipitation in North America. Major results show that the ENSO forcing can strongly modify the atmospheric circulation variations driven by the AMO. Moreover, these modifications differ considerably between the subtropics and the mid- and high-latitude regions. In the subtropics, ENSO-driven variations in precipitation are fairly uniform across longitudes so ENSO effects only add interannual variations to the amplitude of the precipitation anomaly pattern driven by the AMO. In the mid- and high latitudes, ENSO-forced waves in the atmosphere strongly modify the circulation anomalies driven by the AMO, resulting in distinctive interannual variations following the ENSO cycle. The role of the AMO is shown by an asymmetry in precipitation during ENSO between the warm and cold phases of the AMO. These results extend the outcomes of the studies of the recent Climate Variability and Predictability (CLIVAR) Drought Working Group from the AMO and ENSO effects on droughts to understanding of the mechanisms and causal processes connecting the individual and combined SST forcing of the AMO and ENSO with the interannual and multidecadal variations in summertime precipitation and droughts in North America.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Edvinas Stonevicius ◽  
Gintautas Stankunavicius ◽  
Egidijus Rimkus

The climate continentality or oceanity is one of the main characteristics of the local climatic conditions, which varies with global and regional climate change. This paper analyzes indexes of continentality and oceanity, as well as their variations in the middle and high latitudes of the Northern Hemisphere in the period 1950–2015. Climatology and changes in continentality and oceanity are examined using Conrad’s Continentality Index (CCI) and Kerner’s Oceanity Index (KOI). The impact of Northern Hemisphere teleconnection patterns on continentality/oceanity conditions was also evaluated. According to CCI, continentality is more significant in Northeast Siberia and lower along the Pacific coast of North America as well as in coastal areas in the northern part of the Atlantic Ocean. However, according to KOI, areas of high continentality do not precisely correspond with those of low oceanity, appearing to the south and west of those identified by CCI. The spatial patterns of changes in continentality thus seem to be different. According to CCI, a statistically significant increase in continentality has only been found in Northeast Siberia. In contrast, in the western part of North America and the majority of Asia, continentality has weakened. According to KOI, the climate has become increasingly continental in Northern Europe and the majority of North America and East Asia. Oceanity has increased in the Canadian Arctic Archipelago and in some parts of the Mediterranean region. Changes in continentality were primarily related to the increased temperature of the coldest month as a consequence of changes in atmospheric circulation: the positive phase of North Atlantic Oscillation (NAO) and East Atlantic (EA) patterns has dominated in winter in recent decades. Trends in oceanity may be connected with the diminishing extent of seasonal sea ice and an associated increase in sea surface temperature.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 119
Author(s):  
Gloria Martin-Garcia

Integrative studies on paleoclimate variations over oceanic and continental regions are scarce. Though it is known that Earth’s climate is strongly affected by sea-air exchanges of heat and moisture, the role of oceans in climate variations over land remains relatively unexplored. With the aim to unveil this influence, the present work studies major climate oscillations in the North Atlantic region and Europe during the Quaternary, focusing on the oceanic mechanisms that were related to them. During this period, the European climate experienced long-term and wide-amplitude glacial-interglacial oscillations. A covariance between the North Atlantic sea surface temperature and climate signals over the continent is especially observed in Southern Europe. The most severe and drastic climate changes occurred in association to deglaciations, as a consequence of major oceanographic reorganizations that affected atmospheric circulation and ocean-atmosphere heat-flow, which led to variation of temperature and precipitation inland. Most deglaciations began when Northern Hemisphere summer insolation was maximal. Increased heating facilitated the rapid ice-sheet collapse and the massive release of fresh water into the Northern Atlantic, which triggered the weakening or even the shutdown of the North Atlantic Deep Water (NADW) formation. Though the extension of ice-sheets determined the high-latitude European climate, the climate was more influenced by rapid variations of ice volume, deep-water formation rate, and oceanic and atmospheric circulation in middle and subtropical latitudes. In consequence, the coldest stadials in the mid-latitude North Atlantic and Europe since the early Pleistocene coincided with Terminations (glacial/interglacial transitions) and lesser ice-sheet depletions. They were related with decreases in the NADW formation rate that occurred at these times and the subsequent advection of subpolar waters along the western European margin. In Southern Europe, steppe communities substituted temperate forests. Once the freshwater perturbation stopped and the overturning circulation resumed, very rapid and wide-amplitude warming episodes occurred (interstadials). On the continent, raised temperature and precipitations allowed the rapid expansion of moisture-requiring vegetation.


Sign in / Sign up

Export Citation Format

Share Document