A robust LQR-FOPIλDµ controller design for output voltage regulation of stand-alone self-excited induction generator

2021 ◽  
Vol 196 ◽  
pp. 107175
Author(s):  
Haris Calgan ◽  
Metin Demirtas
Author(s):  
Krzysztof Makowski ◽  
Aleksander Leicht

PurposeThe purpose of this paper is to present analysis of short-circuit transients in a single-phase self-excited induction generator (SP-SEIG) for different capacitor topologies.Design/methodology/approachThe paper presents field analysis of the short-circuit problem in the SP-SEIG on the base of two-dimensional field-circuit model of the generator.FindingsThe carried-out field computations of the tested SP-SEIG show that the self-excited induction generator is intrinsically protected from the results of sudden short-circuit, as output voltage and current drop rapidly to zero. Short-circuit is a problem when a series capacitor is used to improve output voltage regulation. Experimental results show that re-excitation of the generator is possible after the short-circuit is removed.Originality/valueThe originality of the paper is the presented analysis of short-circuit transients at terminals of SP-SEIG. A finite elements method-based field circuit model was used. The simulation results were validated by the measurements conducted on a laboratory test setup.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7080
Author(s):  
Piotr Drozdowski ◽  
Dariusz Cholewa

The subject of this publication is a method of controlling the DC voltage of a PWM rectifier supplied by a multiphase cage induction generator with the number of stator phases greater than three operating in a wide range of driving speeds. Voltage regulation is performed by changing the frequency and amplitude of the stator voltages with simultaneous switching of the phase sequence of these voltages. The step change of the voltage sequence is made in the designated ranges of the generator speed, which enables the stabilization of the output voltage in a wide range from the minimum speed of about 25% of the rated speed. Such sequence switching changes the number of pole pairs produced by the winding for each supply sequence. The difference compared to multi-speed induction machines is that, in the presented solution, there is only one winding, not a few, which enables good use of the machine’s magnetic core in the same dimensions as for the three-phase machine of a similar power. Steady-state characteristics and dynamic operation were obtained using laboratory measurements of a standalone nine-phase induction generator. The automatic control system maintained the output voltage at the set level, regardless of the generator load and driving power.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Satyajit H. Chincholkar ◽  
Sangmesh V. Malge ◽  
Sanjaykumar L. Patil

The positive output elementary Luo (POEL) converter is a fourth-order DC–DC converter having highly non-linear dynamic characteristics. In this paper, a new dynamic output voltage feedback controller is proposed to achieve output voltage regulation of the POEL converter. In contrast to the state-of-the-art current-mode controllers for the high-order boost converters, the proposed control strategy uses only the output voltage state variable for feedback purposes. This eliminates the need for the inductor current sensor to reduce the cost and complexity of implementation. The controller design is accompanied by a strong theoretical foundation and detailed stability analyses to obtain some insight into the controlled system. The performance of the proposed controller is then compared with a multi-loop hysteresis-based sliding-mode controller (SMC) to achieve the output voltage-regulation of the same POEL converter. The schemes are compared concerning ease of implementation, in particular, the number of state variables and current sensors required for implementation and the closed-loop dynamic performance. Experimental results illustrating the features of both controllers in the presence of input reference and load changes are presented.


Author(s):  
Rıdvan Keskin ◽  
Ibrahim Aliskan ◽  
Ersin Daş

The regulation of output voltage and equivalent distribution of phase currents of multi-phase converters which have non-minimum phase characteristic are still challenges, especially in the presence of uncertainties in real parameters, duty cycle, input voltage, and load disturbances. However, in classical third-order integral-lead (Type-III) controller design methodologies, the controller is synthesized considering only the nominal performance conditions. This paper proposes a structured [Formula: see text] synthesis framework based on an optimization methodology to the design of a robust Type-III controller for interleaved boost converters. The structured [Formula: see text] control approach is adapted for optimization of Type-III feedback and feedforward controllers in two-degree-of-freedom (2-DOF) control system configuration. The robust stability of the closed-loop interleaved boost converter system against model uncertainties is ensured via the classical [Formula: see text]-analysis technique. Numerical comparisons are made among the classical, i.e. unstructured or full order, [Formula: see text]-based controller design method, a dual-loop PI controller, and proposed 1-DOF and 2-DOF structured controller synthesis approaches on an interleaved boost converter model. Simulation results verify the effectiveness and advantages of the proposed approach from the viewpoint of the output voltage regulation under different disturbance points.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1886
Author(s):  
Younghoon Cho ◽  
Paul Jang

Fly-buck converter is a multi-output converter with the structure of a synchronous buck converter structure on the primary side and a flyback converter structure on the secondary side, and can be utilized in various applications due to its many advantages. In terms of control, the primary side of the fly-buck converter has the same structure as a synchronous buck converter, allowing the constant-on-time (COT) control to be applied to the fly-buck converter. However, due to the inherent energy transfer principle, the primary-side output voltage regulation of COT controlled fly-buck converters may be poor, which can deteriorate the overall converter performance. Therefore, the primary output capacitor must be carefully designed to improve the voltage regulation characteristics. In this paper, a theoretical analysis of the output voltage regulation in COT controlled fly-buck converter is conducted, and based on this, a design guideline for the primary output capacitor considering the output voltage regulation is presented. The validity of the analysis and design guidelines was verified using a 5 W prototype of the COT controlled fly-buck converter for telecommunication auxiliary power supply.


Sign in / Sign up

Export Citation Format

Share Document