scholarly journals Design and Analysis of a Voltage-Mode Non-Linear Control of a Non-Minimum-Phase Positive Output Elementary Luo Converter

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Satyajit H. Chincholkar ◽  
Sangmesh V. Malge ◽  
Sanjaykumar L. Patil

The positive output elementary Luo (POEL) converter is a fourth-order DC–DC converter having highly non-linear dynamic characteristics. In this paper, a new dynamic output voltage feedback controller is proposed to achieve output voltage regulation of the POEL converter. In contrast to the state-of-the-art current-mode controllers for the high-order boost converters, the proposed control strategy uses only the output voltage state variable for feedback purposes. This eliminates the need for the inductor current sensor to reduce the cost and complexity of implementation. The controller design is accompanied by a strong theoretical foundation and detailed stability analyses to obtain some insight into the controlled system. The performance of the proposed controller is then compared with a multi-loop hysteresis-based sliding-mode controller (SMC) to achieve the output voltage-regulation of the same POEL converter. The schemes are compared concerning ease of implementation, in particular, the number of state variables and current sensors required for implementation and the closed-loop dynamic performance. Experimental results illustrating the features of both controllers in the presence of input reference and load changes are presented.

2019 ◽  
Vol 28 (11) ◽  
pp. 1950184 ◽  
Author(s):  
K. Ramash Kumar

This paper presents a design and implementation of fuzzy logic controller (FLC) plus PWM sliding mode controller (SMC) for 2nd order-d KY positive output voltage boost converter (KYPOVBC) operated in continuous inductor current mode (CICM). It is more suitable for steady power source in liquid crystal display (LCD), I-pad, CCTV camera, computer parts, light emitting diode (LED), renewable energy and industrial application. The 2nd order-d KYPOVBC always works in CICM and replica of synchronous rectification characteristics. The ON/OFF nature of the 2nd order-d KYPOVBC is nonlinear and their dynamic performance becomes poor. The classical linear controllers are noncapable of output voltage regulation of this converter during the high input supply voltage and load disparities. With the purpose of improving dynamic performance, an output voltage and inductor current regulation of the 2nd order-d KYPOVBC, a SMC plus FLC is designed. The state-space equations of the 2nd order-d KYPOVBC are arrived and then, SMC parameters are calculated. The FLC rules are framed according to the working nature of the 2nd order-d KYPOVBC without mathematical modeling, which is one of the major advantages of the FLC. The SMC acts as an inside loop of this converter to regulate the inductor current, whereas the FLC and proportional integral (PI) controllers act as an outside loop of the same converter for controlling the output voltage. The performance of the designed model is investigated at various operating regions by developing both the experimental and matrix laboratory (MATLAB)/simulation link (Simulink) models in comparison with the SMC plus PI controller. The results are presented to show the best performance of the designed model.


2015 ◽  
Vol 719-720 ◽  
pp. 417-425 ◽  
Author(s):  
Husan Ali ◽  
Xian Cheng Zheng ◽  
Shahbaz Khan ◽  
Waseem Abbas ◽  
Dawar Awan

The switched mode dc-dc converters are some of the most widely used power electronics circuits because of high conversion efficiency and flexible output voltage. Many methods have been developed for the control of dc-dc converters. This paper deals with design of controller for dc-dc buck converter using various control techniques. The first two control techniques are based on classical or linear control methods i.e. PI and PID control, while the other two control technique are based on non linear control method i.e. Sliding Mode Control (SMC) and Sliding Mode Proportional Integral Derivative Control (SMC-PID). The output voltage and the inductor current of the applied control techniques are analyzed and compared in transient and steady state region. Also the robustness of the buck converter system is tested for load changes and input voltage variations. Matlab/Simulink is used for the simulations. The detailed simulation results are presented, which compare the performance of the designed controllers for various cases. The results show that the non linear control for DC/DC Buck converter proves to be more robust than linear control especially when dynamic tests are applied.


Author(s):  
Rıdvan Keskin ◽  
Ibrahim Aliskan ◽  
Ersin Daş

The regulation of output voltage and equivalent distribution of phase currents of multi-phase converters which have non-minimum phase characteristic are still challenges, especially in the presence of uncertainties in real parameters, duty cycle, input voltage, and load disturbances. However, in classical third-order integral-lead (Type-III) controller design methodologies, the controller is synthesized considering only the nominal performance conditions. This paper proposes a structured [Formula: see text] synthesis framework based on an optimization methodology to the design of a robust Type-III controller for interleaved boost converters. The structured [Formula: see text] control approach is adapted for optimization of Type-III feedback and feedforward controllers in two-degree-of-freedom (2-DOF) control system configuration. The robust stability of the closed-loop interleaved boost converter system against model uncertainties is ensured via the classical [Formula: see text]-analysis technique. Numerical comparisons are made among the classical, i.e. unstructured or full order, [Formula: see text]-based controller design method, a dual-loop PI controller, and proposed 1-DOF and 2-DOF structured controller synthesis approaches on an interleaved boost converter model. Simulation results verify the effectiveness and advantages of the proposed approach from the viewpoint of the output voltage regulation under different disturbance points.


2020 ◽  
Vol 10 (4) ◽  
pp. 39
Author(s):  
Maziar Rastmanesh ◽  
Ezz El-Masry ◽  
Kamal El-Sankary

Photo-voltaic (PV) power harvest can have decent efficiency when dealing with high power. When operating with a DC–DC boost converter during the low-power harvest, its efficiency and output voltage are degraded due to excessive losses in the converter components. The objective of this paper is to present a systematic approach to designing an efficient low-power photo-voltaic harvesting topology with an improved efficiency and output voltage. The proposed topology uses a boost converter with and extra inductor in recycled and synchro-recycled techniques in continuous current mode (CCM). By exploiting the non-linearity of the PV cell, it reduces the power loss and using the current stored in the second inductor, it enhances the output voltage and output power simultaneously. Further, by utilizing the Metal Oxide Silicon Field Effect Transistor’s (MOSFET) body diode as a switch, it maintains a minimum hardware, and introduces a negligible impact on the reliability. The test results of the proposed boost converters show that it achieves a decent power and output voltage. Theoretical and experimental results of the proposed topologies with a tested prototype are presented along with a strategy to maximize power and voltage conversion efficiencies and output voltage.


2013 ◽  
Vol 385-386 ◽  
pp. 862-866
Author(s):  
Ren Jie Yang ◽  
Si Jia Yu ◽  
Hong Bing Yang ◽  
Chuan Sheng Tang ◽  
Yue Hong Dai

In order to improve the dynamic performance of PMLSM, an adaptive robust controller is presented. Meanwhile, the stability of the system is proved by Lyapunov stable theory. The presented controller contains no other motor parameters except state variables. S-function based sliding mode observer is proposed to achieve the estimation of motor speed. The introduction of S-function in the observer can solve the chattering phenomenon caused by traditional sliding mode observer, and solve the amplitude and phase error caused by low-pass filter. Finally, simulation results verify the effectiveness of the proposed control scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yao Zhang ◽  
Yu-Xin Zhao

For spacecraft tracking control system, the reaching law election and controller design are two crucial and important problems. In this paper, spacecraft tracking system is considered as a discrete-time system, a mixed variable speed reaching law of SMC, and a controller for spacecraft tracking system has been investigated. Theory proves that this method can ensure the stability of spacecraft system and eliminate the chattering phenomenon. Furthermore, when spacecraft is inflicted by a certain external interference, the regulating function of neural network can ensure strong robustness of the system. Simulation results show that, compared with exponential reaching law and classical variable speed reaching law, the proposed reaching law has better suppress chattering effect and dynamic performance.


Author(s):  
Siddharth Sridhar ◽  
Rumit Kumar ◽  
Kelly Cohen ◽  
Manish Kumar

Tilt-rotor quadcopters are a novel class of quadcopters with a servo motor attached on each arm that assist the quadcopter’s rotors to tilt to a desired angle thereby enabling thrust vectoring. Using these additional tilt angles, this type of a quadcopter can be used to achieve desired trajectories with faster maneuvering and can handle external disturbances better than a conventional quadcopter. In this paper, a non-linear controller has been designed using sliding mode technique for the pitch, roll, yaw motions and the servo motor tilt angles of the quadcopter. The dynamic model of the tilt-rotor quadcopter is presented, based on which sliding surfaces were designed to minimize the tracking errors. Using the control inputs derived from these sliding surfaces, the state variables converge to their desired values in finite-time. Further, the non-linear sliding surface coefficients are obtained by stability analysis. The robustness of this proposed sliding mode control technique is shown when a faulty motor scenario is introduced. The quadcopter transforms into a T-copter design upon motor failure thereby abetting the UAV to cope up with the instabilities experienced in yaw, pitch and roll axes and still completing the flight mission. The dynamics of the T-copter design and the derivation of the switching surface coefficients for this reconfigurable system are also presented.


Sign in / Sign up

Export Citation Format

Share Document