Comparison of normal and weather corrected performance ratio of photovoltaic solar plants in hot and cold climates

2021 ◽  
Vol 65 ◽  
pp. 53-62
Author(s):  
Ajith Gopi ◽  
K. Sudhakar ◽  
Ngui Wai Keng ◽  
Ananthu R. Krishnan
2019 ◽  
Author(s):  
Rishal Asri

Sunlight is energy that can be converted into electrical energy. One of the uses is by applying it to the roof ofthe building. The application in this building has restrictions such as the placement of the PV moduleshorizontally and vertically. In the study comparing the results of energy obtained from the PV system withhorizontal and vertical positions with a standard degree angle in the direction of azimuth sunlight. Positionusing the horizontal produces more energy and reaches a performance ratio of more than 80%.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1224
Author(s):  
Chil-Chyuan Kuo ◽  
Wei-Hua Chen

Silicone rubber mold (SRM) is capable of reducing the cost and time in a new product development phase and has many applications for the pilot runs. Unfortunately, the SRM after injection molding has a poor cooling efficiency due to its low thermal conductivity. To improve the cooling efficiency, the thermal conductivity of the SRM was improved by adding fillers into the SRM. An optimal recipe for fabricating a high cooling efficiency low-pressure injection mold with conformal cooling channel fabricated by fused deposition modeling technology was proposed and implemented. This study proposes a recipe combining 52.6 wt.% aluminum powder, 5.3 wt.% graphite powder, and 42.1 wt.% liquid silicon rubber can be used to make SRM with excellent cooling efficiency. The price–performance ratio of this SRM made by the proposed recipe is around 55. The thermal conductivity of the SRM made by the proposed recipe can be increased by up to 77.6% compared with convention SRM. In addition, the actual cooling time of the injection molded product can be shortened up to 69.1% compared with the conventional SRM. The actual cooling time obtained by the experiment is in good agreement with the simulation results with the relative error rate about 20%.


2021 ◽  
Vol 45 ◽  
pp. 101163
Author(s):  
W.E. Abd Allah ◽  
M.A. Tawfik ◽  
Atul A. Sagade ◽  
Shiva Gorjian ◽  
K.A. Metwally ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Lei Wu ◽  
Juan Wang ◽  
Long Jin ◽  
P. Hemalatha ◽  
R Premalatha

Artificial intelligence (AI) is an excellent potential technology that is evolving day-to-day and a critical avenue for exploration in the world of computer science & engineering. Owing to the vast volume of data and the eventual need to turn this data into usable knowledge and realistic solutions, artificial intelligence approaches and methods have gained substantial prominence in the knowledge economy and community world in general. AI revolutionizes and raises athletics to an entirely different level. Although it is clear that analytics and predictive research have long played a vital role in sports, AI has a massive effect on how games are played, structured, and engaged by the public. Apart from these, AI helps to analyze the mental stability of the athletes. This research proposes the Artificial Intelligence assisted Effective Monitoring System (AIEMS) for the specific intelligent analysis of sports people’s psychological experience. The comparative analysis suggests the best AI strategies for analyzing mental stability using different criteria and resource factors. It is observed that the growth in the present incarnation indicates a promising future concerning AI use in elite athletes. The study ends with the predictive efficiency of particular AI approaches and procedures for further predictive analysis focused on retrospective methods. The experimental results show that the proposed AIEMS model enhances the athlete performance ratio of 98.8%, emotion state prediction of 95.7%, accuracy ratio of 97.3%, perception level of 98.1%, and reduces the anxiety and depression level of 15.4% compared to other existing models.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 566
Author(s):  
Ruwaida Abdul Wahid ◽  
Wei Lun Ang ◽  
Abdul Wahab Mohammad ◽  
Daniel James Johnson ◽  
Nidal Hilal

Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 734
Author(s):  
Pablo Fernández-Lucio ◽  
Octavio Pereira Neto ◽  
Gaizka Gómez-Escudero ◽  
Francisco Javier Amigo Fuertes ◽  
Asier Fernández Valdivielso ◽  
...  

Productivity in the manufacture of aircrafts components, especially engine components, must increase along with more sustainable conditions. Regarding machining, a solution is proposed to increase the cutting speed, but engines are made with very difficult-to-cut alloys. In this work, a comparison between two cutting tool materials, namely (a) cemented carbide and (b) SiAlON ceramics, for milling rough operations in Inconel® 718 in aged condition was carried out. Furthermore, both the influence of coatings in cemented carbide milling tools and the cutting speed in the ceramic tools were analysed. All tools were tested until the end of their useful life. The cost performance ratio was used to compare the productivity of the tested tools. Despite the results showing higher durability of the coated carbide tool, the ceramic tools presented a better behavior in terms of productivity at higher speed. Therefore, ceramic tools should be used for higher productivity demands, while coated carbide tools for low speed-high volume material removal.


2021 ◽  
pp. 111284
Author(s):  
Filippo Padovani ◽  
Nelson Sommerfeldt ◽  
Francesca Longobardi ◽  
Joshua M. Pearce

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.


Sign in / Sign up

Export Citation Format

Share Document