scholarly journals Cyanobacterial inoculation in elevated CO2 environment stimulates soil C enrichment and plant growth of tomato

Author(s):  
Venkatesh Kokila ◽  
Radha Prasanna ◽  
Arun Kumar ◽  
Sekar Nishanth ◽  
Jyoti Shukla ◽  
...  
2014 ◽  
Vol 94 (6) ◽  
pp. 1025-1032 ◽  
Author(s):  
F. L. Walley ◽  
A. W. Gillespie ◽  
Adekunbi B. Adetona ◽  
J. J. Germida ◽  
R. E. Farrell

Walley, F. L., Gillespie, A. W., Adetona, A. B., Germida, J. J. and Farrell, R. E. 2014. Manipulation of rhizosphere organisms to enhance glomalin production and C-sequestration: Pitfalls and promises. Can. J. Plant Sci. 94: 1025–1032. Arbuscular mycorrhizal fungi (AMF) reportedly produce glomalin, a glycoprotein that has the potential to increase soil carbon (C) and nitrogen (N) storage. We hypothesized that interactions between rhizosphere microorganisms, such as plant growth-promoting rhizobacteria (PGPR), and AMF, would influence glomalin production. Our objectives were to determine the effects of AMF/PGPR interactions on plant growth and glomalin production in the rhizosphere of pea (Pisum sativum L.) with the goal of enhancing C and N storage in the rhizosphere. One component of the study focussed on the molecular characterization of glomalin and glomalin-related soil protein (GRSP) using complementary synchrotron-based N and C X-ray absorption near-edge structure (XANES) spectroscopy, pyrolysis field ionization mass spectrometry (Py-FIMS), and proteomics techniques to characterize specific organic C and N fractions associated with glomalin production. Our research ultimately led us to conclude that the proteinaceous material extracted, and characterized in the literature, as GRSP is not exclusively of AMF origin. Our research supports the established concept that GRSP is important to soil quality, and C and N storage, irrespective of origin. However, efforts to manipulate this important soil C pool will remain compromised until we more clearly elucidate the chemical nature and origin of this resource.


2011 ◽  
Vol 8 (2) ◽  
pp. 353-364 ◽  
Author(s):  
M. R. Hoosbeek ◽  
M. Lukac ◽  
E. Velthorst ◽  
A. R. Smith ◽  
D. L. Godbold

Abstract. Through increases in net primary production (NPP), elevated CO2 is hypothesized to increase the amount of plant litter entering the soil. The fate of this extra carbon on the forest floor or in mineral soil is currently not clear. Moreover, increased rates of NPP can be maintained only if forests can escape nitrogen limitation. In a Free atmospheric CO2 Enrichment (FACE) experiment near Bangor, Wales, 4 ambient and 4 elevated [CO2] plots were planted with patches of Betula pendula, Alnus glutinosa and Fagus sylvatica on a former arable field. After 4 years, biomass averaged for the 3 species was 5497 (se 270) g m−2 in ambient and 6450 (se 130) g m−2 in elevated [CO2] plots, a significant increase of 17% (P = 0.018). During that time, only a shallow L forest floor litter layer had formed due to intensive bioturbation. Total soil C and N contents increased irrespective of treatment and species as a result of afforestation. We could not detect an additional C sink in the soil, nor were soil C stabilization processes affected by elevated [CO2]. We observed a decrease of leaf N content in Betula and Alnus under elevated [CO2], while the soil C/N ratio decreased regardless of CO2 treatment. The ratio of N taken up from the soil and by N2-fixation in Alnus was not affected by elevated [CO2]. We infer that increased nitrogen use efficiency is the mechanism by which increased NPP is sustained under elevated [CO2] at this site.


2010 ◽  
Vol 37 (6) ◽  
pp. 555 ◽  
Author(s):  
Beth R. Loveys ◽  
John J. G. Egerton ◽  
Dan Bruhn ◽  
Marilyn C. Ball

The relative effects of disturbance (here defined as bare soil), competition for edaphic resources, thermal interference and elevated [CO2] on growth of tree seedlings in grasslands were studied under field conditions. Snow gum (Eucalyptus pauciflora Sieb. ex Spreng.) seedlings were grown in open-top chambers flushed with either ambient or elevated [CO2] from March 2004 to January 2005 (autumn to summer). These seedlings were planted into three treatments (i.e. bare soil, soil covered with straw or soil supporting a sward of live pasture grass) to separate effects of grass on seedling growth into those due to competition with grass for soil resources or to alteration of the thermal environment caused by a grassy surface (Ball et al. 2002). After the first major autumn frost, seedlings growing in competition with grass lost 59% of their canopy area, whereas those growing in bare soil or straw suffered negligible damage. These results reveal the complexity of competitive inhibition of plant growth in which ineffective competition for resources such as soil water enhances the vulnerability of the plant to abiotic stress, in this case frost. Tree seedlings growing in bare soil and straw commenced growth earlier in spring than those growing in competition with grass, where soil moisture was consistently lowest. Under ambient [CO2], growth was greater in bare soil than in straw, consistent with thermal interference, but these differences disappeared under elevated [CO2]. Elevated [CO2] significantly increased biomass accumulation for seedlings growing in bare soil and straw treatments, but not in grass. Thus, elevated [CO2] alleviated apparent thermal interference of seedling growth in spring but did not overcome adverse effects on seedling growth of either competitive reduction in soil resources or competitive enhancement of environmental stress. Nevertheless, elevated [CO2] could promote invasion of grasslands due to enhancement of woody plant growth in bare soil created by disturbances.


2015 ◽  
Vol 29 ◽  
pp. 79-80
Author(s):  
Juliane Kellner ◽  
Sebastian Multsch ◽  
Philipp Kraft ◽  
Tobias Houska ◽  
Christoph Mueller ◽  
...  

2006 ◽  
Vol 12 (11) ◽  
pp. 2077-2091 ◽  
Author(s):  
MARIE-ANNE De GRAAFF ◽  
KEES-JAN Van GROENIGEN ◽  
JOHAN SIX ◽  
BRUCE HUNGATE ◽  
CHRIS Van KESSEL

Author(s):  
Sutarman Gafur ◽  
Saeri Sagiman ◽  
Tatang Abdurrahman

Biochar is already well-known as a soil amendment material that has great potential to improve degraded soil properties. However, in order to maximize its role in improving important soil characteristics to support plant growth, it needs to be combined with other potential materials. In this study we are seeking a treatment package that is potentially useful and locally affordable.  This experiment is designed to study the effects of biochar and low input of NPK treatment packages on corn growth and yield in suboptimal upland soil of West Kalimantan, and to study the impact of these treatments on some important soil characteristics.  Four treatment levels were used: T0 (control), T1 (Biochar 5% (W/W), and NPK 300kg/ha), T2 (Biochar 5%, and NPK 600 kg/ha), T3 (Biochar 10% and NPK300 kg/ha, and T4 (Biochar 10% and NPK 600 kg/ha). Each treatment had four replications.  The results show that total plant dry weight increased from 151 g/plant (T1) to 237 g/plant (T4), while total corn production increased from 12.9 (T1) to 15.7 ton/ha (T4).  Furthermore, all treatment packages also significantly increased soil pH, C-organic content, CEC, and soil C/N ratios.  Moreover, the content of N, P, K, in the soil by the end of the experiment also increased on average 163, 1143, and 432%, respectively.  In short, all biochar based treatments significantly increased plant growth, yields, and some important soil charactersitics.  We highly recommend T3, with lower NPK levels than normally recommended, as a treatment package to be further field tested in suboptimal upland soil in West Kalimantan.


2015 ◽  
Author(s):  
David Johnson ◽  
Joe Ellington ◽  
Wesley Eaton

The goals of this research were to explore alternative agriculture management practices in both greenhouse and field trials that do not require the use of synthetic and/or inorganic nutrient amendments but instead would emulate mechanisms operating in natural ecosystems, between plant and Soil Microbial Communities (SMC), for plant nutrient acquisition and growth. Greenhouse plant-growth trials, implementing a progression of soil conditions with increasing soil carbon (C) (C= 0.14% to 5.3%) and associated SMC population with increasing Fungal to Bacterial ratios (F:B) ( from 0.04 to 3.68), promoted a) increased C partitioning into plant shoot and plant fruit partitions (m=4.41, r2=0.99), b) significant quantities of plant photosynthate, 49%-97% of Total System New C (CTSN), partitioned towards increasing soil C c) four times reduction in soil C respiration (CR) as F:B ratios increased, starting with 44% of initial treatment soil C content respired in bacterial-dominant soils (low F:B), to 11% of soil C content respired in higher fertility fungal-dominant soils (Power Regression, r2=0.90; p=0.003). Plant growth trials in fields managed for increased soil C content and enhanced SMC population and structure (increased F:B) demonstrated: a) dry aboveground biomass production rates (g m-2) of ~1,980 g in soils initiating SMC enhancement (soil C=0.87, F:B= 0.80) with observed potentials of 8,450 g in advanced soils (soil C=7.6%, F:B=4.3) b) a 25-times increase in active soil fungal biomass and a ~7.5 times increase in F:B over a 19 month application period to enhance SMC and c) reduced soil C respiration rates, from 1.25 g C m-2 day-1 in low fertility soils (soil C= 0.6%, F:B= 0.25) with only a doubling of respiration rates to 2.5 g C m-2 day-1 in a high-fertility soil with an enhanced SMC (F:B= 4.3) and >7 times more soil C content (soil C= 7.6%). Enhancing SMC population and F:B structure in a 4.5 year agricultural field study promoted annual average capture and storage of 10.27 metric tons soil C ha-1 year -1 while increasing soil macro-, meso- and micro-nutrient availability offering a robust, cost-effective carbon sequestration mechanism within a more productive and long-term sustainable agriculture management approach.


HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2143-2150 ◽  
Author(s):  
Craig Cogger ◽  
Rita Hummel ◽  
Jennifer Hart ◽  
Andy Bary

Although compost can improve soil properties related to plant growth and water quality, the value of amending landscape beds for trees and shrubs has been questioned. This research assesses short and midterm effects of compost application and bark mulch on soils and plants in landscape beds and compares the effects of compost applied to the surface or incorporated. Trees and shrubs were established in 2001 in a replicated field experiment with the following treatments: 1) unamended control; 2) compost (7.6-cm depth) applied to the surface; 3) 7.6 cm compost incorporated by rototilling to a depth of 20 cm; 4) bark mulch (7.6 cm); 5) compost surface-applied (7.6 cm) + bark mulch (7.6 cm); and 6) compost incorporated + bark mulch. Soil measurements were made one or more times between 2001 and 2007, including bulk density, compaction, infiltration, aggregate stability, soil moisture tension, total carbon (C) and nitrogen (N), nitrate-N, Bray-phosphorus, exchangeable potassium, and pH. Bark and compost mulch depths were determined three times and plant growth measured annually. Half the depth of surface-applied compost and 26% to 41% of the initial soil C increase from incorporated compost remained 5 years after application; and significant changes in bulk density, compaction, infiltration, and nutrients were apparent. Compost incorporation had a greater effect than surface application on soil C, N, and bulk density. Infiltration was similar in incorporated and surface treatments, and nutrient availability was similar except for N. Soil moisture retention was improved with surface-applied compost. Bark had similar effects as surface-applied compost on bulk density, soil moisture retention, and infiltration. During the first 4 years after transplanting, dogwoods in the compost incorporated + bark mulch treatment typically had larger shoot growth indices. By Year 5, treatment no longer influenced shoot growth. Plants in compost-treated plots had darker green leaves. Surface application of compost could provide significant benefits where incorporation is not feasible.


Sign in / Sign up

Export Citation Format

Share Document