scholarly journals Corn Growth and Yield on Suboptimal Upland Soil After Amended with Biochar and Low Levels of Fertilizer in West Kalimantan, Indonesia

Author(s):  
Sutarman Gafur ◽  
Saeri Sagiman ◽  
Tatang Abdurrahman

Biochar is already well-known as a soil amendment material that has great potential to improve degraded soil properties. However, in order to maximize its role in improving important soil characteristics to support plant growth, it needs to be combined with other potential materials. In this study we are seeking a treatment package that is potentially useful and locally affordable.  This experiment is designed to study the effects of biochar and low input of NPK treatment packages on corn growth and yield in suboptimal upland soil of West Kalimantan, and to study the impact of these treatments on some important soil characteristics.  Four treatment levels were used: T0 (control), T1 (Biochar 5% (W/W), and NPK 300kg/ha), T2 (Biochar 5%, and NPK 600 kg/ha), T3 (Biochar 10% and NPK300 kg/ha, and T4 (Biochar 10% and NPK 600 kg/ha). Each treatment had four replications.  The results show that total plant dry weight increased from 151 g/plant (T1) to 237 g/plant (T4), while total corn production increased from 12.9 (T1) to 15.7 ton/ha (T4).  Furthermore, all treatment packages also significantly increased soil pH, C-organic content, CEC, and soil C/N ratios.  Moreover, the content of N, P, K, in the soil by the end of the experiment also increased on average 163, 1143, and 432%, respectively.  In short, all biochar based treatments significantly increased plant growth, yields, and some important soil charactersitics.  We highly recommend T3, with lower NPK levels than normally recommended, as a treatment package to be further field tested in suboptimal upland soil in West Kalimantan.

Horticulturae ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 72
Author(s):  
Mazhar Abbas ◽  
Faisal Imran ◽  
Rashid Iqbal Khan ◽  
Muhammad Zafar-ul-Hye ◽  
Tariq Rafique ◽  
...  

Bitter gourd is one of the important cucurbits and highly liked among both farmers and consumers due to its high net return and nutritional value. However, being monoecious, it exhibits substantial variation in flower bearing pattern. Plant growth regulators (PGRs) are known to influence crop phenology while gibberellic acid (GA3) is one of the most prominent PGRs that influence cucurbits phenology. Therefore, a field trial was conducted at University of Agriculture Faisalabad to evaluate the impact of a commercial product of gibberellic acid (GA3) on growth, yield and quality attributes of two bitter gourd (Momordica charantiaL.) cultivars. We used five different concentrations (0.4 g, 0.6 g, 0.8 g, 1.0 g, and 1.2 g per litre) of commercial GA3 product (Gibberex, 10% Gibberellic acid). Results showed that a higher concentration of gibberex (1.0 and 1.20 g L−1 water) enhanced the petiole length, intermodal length, and yield of bitter gourd cultivars over control in Golu hybrid and Faisalabad Long. A significant decrease in the enzyme superoxidase dismutase, peroxidase, and catalase activities were observed with an increasing concentration of gibberex (1.0 and 1.20 gL−1 water) as compared to control. These results indicate that the exogenous application of gibberex at a higher concentration (1.2 g L−1) has a dual action in bitter gourd plant: i) it enhances the plant growth and yield, and ii) it also influenced the antioxidant enzyme activities in fruits. These findings may have a meaningful, practical use for farmers involved in agriculture and horticulture.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 336-343 ◽  
Author(s):  
J. Jaraba ◽  
C. S. Rothrock ◽  
T. L. Kirkpatrick ◽  
K. R. Brye

Microplots were used to evaluate the impact of soil texture on Meloidogyne incognita, Thielaviopsis basicola, and their interaction on cotton. A native silt loam soil (48% sand) and four different artificial soil textures produced by mixing native soil with sand (53, 70, 74, and 87% sand) were studied. Each soil texture was infested with 0, 4, or 8 M. incognita eggs and 0 or 20 T. basicola chlamydospore chains per gram of soil in a factorial treatment arrangement. Plots were watered when soil moisture fell below –10 joules/kg for the first 21 days and –30 joules/kg from 22 days to harvest. Plant growth was suppressed early in the season and midseason by T. basicola. M. incognita suppressed plant growth and delayed plant development late in the season across all soil textures. Cotton yield was lower in the presence of either T. basicola or M. incognita. An interaction between M. incognita and T. basicola, which decreased plant growth and yield, occurred in 2006 when neither pathogen caused substantial plant damage. Plant growth, development, and yield were lowest in soils with >74% sand. Root colonization by T. basicola and fungal reproduction and survival decreased in soil having 87% sand. M. incognita generally caused more galling and reproduction in soils as sand content increased. Root galling severity and M. incognita reproduction were suppressed by the presence of T. basicola in soil at sand contents lower than 87%. Soil texture had a greater impact on T. basicola than on M. incognita in this study.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dominique Comeau ◽  
Carole Balthazar ◽  
Amy Novinscak ◽  
Nadia Bouhamdani ◽  
David L. Joly ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) deploy several mechanisms to improve plant health, growth and yield. The aim of this study was to evaluate the efficacy of two Pseudomonas spp. strains and three Bacillus spp. strains used as single treatments and in consortia to improve the yield of Cannabis sativa and characterize the impact of these treatments on the diversity, structure and functions of the rhizosphere microbiome. Herein, we demonstrate a significant C. sativa yield increase up to 70% when inoculated with three different Pseudomonas spp./Bacillus spp. consortia but not with single inoculation treatments. This growth-promoting effect was observed in two different commercial soil substrates commonly used to grow cannabis: Promix and Canna coco. Marker-based genomic analysis highlighted Bacillus spp. as the main modulator of the rhizosphere microbiome diversity and Pseudomonas spp. as being strongly associated with plant growth promotion. We describe an increase abundance of predicted PGPR metabolic pathways linked with growth-promoting interactions in C. sativa.


2017 ◽  
Vol 15 (1) ◽  
pp. 55-59
Author(s):  
MG Neogi ◽  
AKM Salah Uddin ◽  
MT Uddin ◽  
J Lauren

An experiment was carried out at RDRS Farm in Rangpur during the 2014 T. aman rice season to determine the impact of seedbed solarization on plant growth and yield of rice varieties, BR11 and BR33. Solarization was achieved by covering the seedbeds with transparent polythene sheet for four weeks prior to sowing. Seedlings of both varieties were raised on solarized and non-solarized seedbeds and later transplanted into the main field for comparison of growth and yield. Emergence, seedling height and weight, root length and weight were higher with seedlings raised on solarized seedbeds compared to seedlings from non-solarized seedbeds. Also root knot nematode galls decreased significantly on seedlings from solarized seedbeds compared to those from non-solarized seedbeds for both the varieties tested. The increase in height and weight of solarized seedlings enabled easy access for uprooting and transplanting seedlings in the main field within the recommended 20-25 days after sowing. When transplanted in untreated main fields, plants grown from the solarized seedlings of both the rice varieties had significantly less infestation of stem borer as compared to non-solarized plants. Grain yields obtained from solarized seedlings were 7% higher for BR11 and 9% higher for BR33 relative to normal seedlings.J. Bangladesh Agril. Univ. 15(1): 55-59, January 2017


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 115
Author(s):  
Alaa I. B. Abou-Sreea ◽  
Marwa Kamal ◽  
Dalia M. El Sowfy ◽  
Mostafa M. Rady ◽  
Gamal F. Mohamed ◽  
...  

Phosphorus (P) is an essential macronutrient necessary for plant growth, development, and reproduction. Two field experiments were carried out in 2018/2019 and 2019/2020 on P-deficient soil to evaluate the impact of foliar fertilization with nanophosphorus (nP) on growth, yield, and physio-biochemical indices, as well as trigonelline content of fenugreek plants under deficient irrigation (dI) stress (a deficit of 20 and 40% of crop evapotranspiration; dI-20 and dI-40). The growth and yield traits, leaf integrity (relative water content and membrane stability index), photosynthetic pigment contents, leaf and seed P contents, and stem and leaf anatomical features significantly decreased under dI-20, with greater reductions recorded under dI-40. In contrast, water-use efficiency, osmoprotective compounds, including free amino acids, soluble sugars, proline, and trigonelline, along with antioxidant contents (ascorbate, glutathione, phenolics, and flavonoids) and their activity increased significantly under both dI-20 and dI-40. However, foliar feeding with nano-P considerably increased plant growth and yield traits, leaf integrity, photosynthetic pigments contents, leaf and seed P contents, and anatomical features. Besides, water-use efficiency, osmoprotectant contents, and antioxidant content and activity were further increased under both dI-20 and dI-40. The positive effects were more pronounced with the smaller nP (25 nm) than the larger nP (50 nm). The results of this study backed up the idea of using foliar nourishment with nP, which can be effective in modulating fenugreek plant growth and seed production.


2010 ◽  
Vol 11 ◽  
pp. 40-45 ◽  
Author(s):  
K. Kharel ◽  
L. P. Amgain

An experiment was conducted at Institute of Agriculture and Animal Science, Rampur, Chitwan, Nepal during March-July 2008 to explore the impact of ambient ozone on crop growth and yield. Mungbean cultivar "Pratikshya" was used as a test crop for the study. Mungbean plants were planted in 40 pots and 50% of the plants (i.e. plants in 20 pots) were treated with ethylenediurea (EDU) from 13 DAS to crop maturity at 10 days intervals. The ambient ozone level of the site was measured with passive samplers. The ozone level ranged from 29.3 to 39.1 ppb at the experimentation site during the cropping period. It was found that the ambient ozone at the site caused significant effects on plant growth and yield. The observed ambient ozone was found to reduce the growth parameters like plant height, per plant number of leaves, and number of branches by 10%, 27.74%, and 10.88%, respectively at 70 DAS while it reduced per plant number of seeds (13.17%), seed dry weights (19.67%), test weight (g/1000 seeds), (10.28%), total above-ground biomass (16.60%), harvest index (6.25%), and shelling percentage (5.07%) of controlled over EDU treated plants (ozone protected). The study clearly indicated that ambient ozone contributes to lower plant growth and crop yield.Key words: Ambient ozone; Ethylenediurea (EDU); Passive samplerThe Journal of AGRICULTURE AND ENVIRONMENT Vol. 11, 2010Page: 40-45Uploaded Date: 15 Septembre, 2010


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 788
Author(s):  
Md. Quamruzzaman ◽  
S. M. Nuruzzaman Manik ◽  
Sergey Shabala ◽  
Meixue Zhou

Soil salinity is one of the major abiotic stresses restricting plant growth and development. Application of plant growth regulators (PGRs) is a possible practical means for minimizing salinity-induced yield losses, and can be used in addition to or as an alternative to crop breeding for enhancing salinity tolerance. The PGRs auxin, cytokinin, nitric oxide, brassinosteroid, gibberellin, salicylic acid, abscisic acid, jasmonate, and ethylene have been advocated for practical use to improve crop performance and yield under saline conditions. This review summarizes the current knowledge of the effectiveness of various PGRs in ameliorating the detrimental effects of salinity on plant growth and development, and elucidates the physiological and genetic mechanisms underlying this process by linking PGRs with their downstream targets and signal transduction pathways. It is shown that, while each of these PGRs possesses an ability to alter plant ionic and redox homeostasis, the complexity of interactions between various PGRs and their involvement in numerous signaling pathways makes it difficult to establish an unequivocal causal link between PGRs and their downstream effectors mediating plants’ adaptation to salinity. The beneficial effects of PGRs are also strongly dependent on genotype, the timing of application, and the concentration used. The action spectrum of PGRs is also strongly dependent on salinity levels. Taken together, this results in a rather narrow “window” in which the beneficial effects of PGR are observed, hence limiting their practical application (especially under field conditions). It is concluded that, in the light of the above complexity, and also in the context of the cost–benefit analysis, crop breeding for salinity tolerance remains a more reliable avenue for minimizing the impact of salinity on plant growth and yield. Further progress in the field requires more studies on the underlying cell-based mechanisms of interaction between PGRs and membrane transporters mediating plant ion homeostasis.


Author(s):  
Abhay Kumar ◽  
Stephen Joseph ◽  
Ellen R. Graber ◽  
Sara Taherysoosavi ◽  
David R. G. Mitchell ◽  
...  

Abstract Background Fostering plant growth and improving agricultural yields by adding “macro”-sized biochar to soil has been extensively explored. However, the impact and mechanism of action of aqueous extracts of biochar applied as foliar fertilizer on plant growth and physiology is poorly understood, and was the objective of this study. Extracts were produced from biochars derived from pine wood:clay:sand (PCS-BC; 70:15:15) and wheat straw:bird manure (WB-BC; 50:50) and tested at two dilutions each. The plant influence of the biochar extracts and dilutions were compared with chemical fertilizer made up to the same minor trace element compositions as the applied extracts and a control treatment consisting of only deionized water. Results The WB-BC extract was more alkaline than the PCS-BC extract and exhibited higher electrical conductivity values. Similar to the biochars from which they were derived, the WB-BC extract had higher concentrations of dissolved mineral elements and organic matter than the PCS-BC extract. Despite major differences in chemical composition between the PCS-BC and WB-BC extracts, there was virtually no difference in plant performance between them at any chosen dilution. Foliar application of PCS25, WB50, and WB100 led to a significant increase in the plant fresh biomass in comparison to their corresponding chemical fertilizer and to deionized water. Plant growth parameters including number of leaves and chlorophyll contents in plants treated with biochar extract foliar sprays were significantly higher than in all the other treatments. Electron microscopy and spectroscopy studies showed the deposition of macro- and nanoscale organomineral particles and agglomerates on leaf surfaces of the examined PCS25-treated plant. Detailed study suggests that carbon nanomaterials and TiO2 or Si-rich nanoscale organomineral complexes or aluminosilicate compounds from biochar extract were main contributors to increased plant growth and improved plant performance. Conclusion These results suggest that biochar extracts have the potential to be used as nanofertilizer foliar sprays for enhancing plant growth and yield.


2015 ◽  
Vol 26 (1) ◽  
pp. 32-37 ◽  
Author(s):  
M Rahman ◽  
MA Nahar ◽  
MS Sahariar ◽  
MR Karim

An experiment was conducted at the Horticulture Farm of Bangladesh Agricultural University, Mymensingh to test the impact of plant growth regulators on growth and yield of summer tomato. The experiment consisted of two tomato varieties viz. BARI Hybrid Tomato-4 and BARI Hybrid Tomato-8 and four types of plant growth regulator (PGR)viz.,(i) control (without PGR), (ii) 4-CPA (4-chlorophenoxy acetic acid), GA3 (gibberellic acid) and 4-CPA +GA3. The two-factor experiment was laid out in randomized complete block design with three replications. The results of the experiment revealed that significant variations were observed for most of the characters studied. At 75 DAT, the tallest plant (79.35 cm), number of flowers and fruits (38.11 and 19.04, respectively) plant-1, individual weight (58.44 g) and fruit yield (22.75 t ha-1) were found in BARI Hybrid Tomato-8.At 75 DAT the maximum plant height (87.90 cm), number of flowers and fruits (49.04 and 21.9, respectively) plant-1, individual fruit weight (61.16 g), and fruit yield (27.28 tha-1) were found when 4-CPA + GA3 applied together, whereas the minimum for these characters were recorded from control plants. In case of combined effect of variety and plant growth regulator, the maximum plant height (87.90 cm), number of flowers and fruits (49.04 and 21.91, respectively) plant-1, individual fruit weight (61.16 g) and fruit yield (27.28 t ha-1) were observed in BARI Hybrid Tomato-8 when treated with 4-CPA + GA3together, and the minimum for all these parameters were found in control plants. The results of the present study suggest thatboth 4-CAP and GA3together can be practiced for increasing summer tomato production for both the varieties.Progressive Agriculture 26:32-37, 2015


2021 ◽  
Author(s):  
Wei Yan ◽  
Fengling Shi ◽  
Tao Wan

Abstract Background and aimsHigh-intensity grazing in the Mongolian grassland has led to the general deterioration of biodiversity and ecosystem functioning. Although abundant evidence shows that grazing affects the structure and function of grassland ecosystems, research on the impact of precipitation, especially under drought and overgrazing. MethodsWe examined the effects of heavy grazing, moderate grazing and no grazing on plant communities; plant and soil C, N and P contents; and plant and soil C:N:P stoichiometry in the desert grassland in different years with different amounts of precipitation. ResultsThere was no significant difference in the species diversity between the grazing and no grazing treatment, while the no grazing treatment was significantly higher than the heavy grazing treatment. Compared with the amounts in the no grazing and moderate grazing treatments, the N and P contents of the plants in the heavy grazing treatment were the highest, and the N content of the soil increased. There was a positive correlation between precipitation and the N and P contents of plants and the C and N contents of the soil at 0-10 cm and 10-20 cm. ConclusionsOur study suggest that a large amount of precipitation of plant growth will drive changes in the community species diversity. Grazing promoted the flow of N between plants and the soil, especially under heavy grazing. Under grazing stress, plants maintain the potential of compensatory growth, and precipitation in the peak season of plant growth induces rapid growth, suggesting that precipitation is an important factor driving grazing ecosystems.


Sign in / Sign up

Export Citation Format

Share Document