Surface modification of electrospun polycaprolactone microfibers by air plasma treatment: Effect of plasma power and treatment time

2016 ◽  
Vol 84 ◽  
pp. 502-513 ◽  
Author(s):  
L.A. Can-Herrera ◽  
A. Ávila-Ortega ◽  
S. de la Rosa-García ◽  
A.I. Oliva ◽  
J.V. Cauich-Rodríguez ◽  
...  
2013 ◽  
Vol 770 ◽  
pp. 112-115
Author(s):  
Nawal Binhayeeniyi ◽  
Adinan Jehsu ◽  
Mancharee Sukpet ◽  
Safitree Nawae

Low-temperature air plasma was used to treat the cellulose membranes by varying the period of time from 10 to 30 minutes. The surfaces of membranes were changed from hydrophobic to hydrophilic membranes. The contact angles of treated membranes were increased when increasing time to treat. The surface modifications of membrane before and after treated were characterized by SEM. It is shown that air plasma treatment is used to improve the roughness. The dielectric property was also studied.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 991 ◽  
Author(s):  
Masoud Shekargoftar ◽  
Jana Jurmanová ◽  
Tomáš Homola

Organic-inorganic halide perovskite materials are considered excellent active layers in the fabrication of highly efficient and low-cost photovoltaic devices. This contribution demonstrates that rapid and low-temperature air-plasma treatment of mixed organic-inorganic halide perovskite film is a promising technique, controlling its opto-electrical surface properties by changing the ratio of organic-to-inorganic components. Plasma treatment of perovskite films was performed with high power-density (25 kW/m2 and 100 W/cm3) diffuse coplanar surface barrier discharge (DCSBD) at 70 °C in ambient air. The results show that short plasma treatment time (1 s, 2 s, and 5 s) led to a relatively enlargement of grain size, however, longer plasma treatment time (10 s and 20 s) led to an etching of the surface. The band-gap energy of the perovskite films was related to the duration of plasma treatment; short periods (≤5 s) led to a widening of the band gap from ~1.66 to 1.73 eV, while longer exposure (>5 s) led to a narrowing of the band gap to approx. 1.63 eV and fast degradation of the film due to etching. Surface analysis demonstrated that the film became homogeneous, with highly oriented crystals, after short plasma treatment; however, prolonging the plasma treatment led to morphological disorders and partial etching of the surface. The plasma treatment approach presented herein addresses important challenges in current perovskite solar cells: tuning the optoelectronic properties and manufacturing homogeneous perovskite films.


2015 ◽  
Vol 329 ◽  
pp. 287-291 ◽  
Author(s):  
Tiago Dias Martins ◽  
Rogério Aparecido Bataglioli ◽  
Thiago Bezerra Taketa ◽  
Fernando da Cruz Vasconcellos ◽  
Marisa Masumi Beppu

2017 ◽  
Vol 893 ◽  
pp. 318-322 ◽  
Author(s):  
Feng De Wang ◽  
Yong Lei Lv ◽  
Xu Wei ◽  
Guo Ling ◽  
Zhe Wen Han

Aramid fiber III has been treated by plasma treatment on different atmosphere gas to enhance the adhesive force between Aramid fiber III and epoxy matrix. The results of contact angle and SEM indicate that the obvious corrosion appear in the surface of aramid fiber III after plasma treatment. The yarn pull-out method was used to evaluate the effect of surface modification. The contact angle of original aramid fiber III is 65.9 o, and after treated the contact angle is declined to 62.2 o. The evaluation results show the tensile strength and NOL ILSS of treated Aramid fiber III/epoxy composite increased by about 10%. In summary, the effect of plasma treatment is obvious and has potential industry application.


2003 ◽  
Vol 211 (1-4) ◽  
pp. 386-397 ◽  
Author(s):  
Claudia Riccardi ◽  
Ruggero Barni ◽  
Elena Selli ◽  
Giovanni Mazzone ◽  
Maria Rosaria Massafra ◽  
...  

Plasma ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Joshua Smith ◽  
Isaac Adams ◽  
Hai-Feng Ji

This research focused on determining the effectiveness of non-thermal atmospheric pressure plasma as an alternative to advanced oxidation processes (AOP) for antibiotic removal in solution. For this study, 20 mM (6.988 g/L) solutions of ampicillin were treated with a floating electrode dielectric barrier discharge (FE-DBD) plasma for varying treatment times. The treated solutions were analyzed primarily using mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). The preliminary product formed was Ampicillin Sulfoxide, however, many more species are formed as plasma treatment time is increased. Ampicillin was completely eliminated after five minutes of air-plasma treatment. The primary mechanism of ampicillin degradation by plasma treatment is investigated in this study.


Sign in / Sign up

Export Citation Format

Share Document