N-methyl-N-nitrosourea-induced neuronal cell death in a large animal model of retinal degeneration in vitro

2016 ◽  
Vol 148 ◽  
pp. 55-64 ◽  
Author(s):  
Linnéa Taylor ◽  
Karin Arnér ◽  
Fredrik Ghosh
Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 361
Author(s):  
Gabriel Gonzalez ◽  
Jiří Grúz ◽  
Cosimo Walter D’Acunto ◽  
Petr Kaňovský ◽  
Miroslav Strnad

Cytokinins are adenine-based phytohormones that regulate key processes in plants, such as cell division and differentiation, root and shoot growth, apical dominance, branching, and seed germination. In preliminary studies, they have also shown protective activities against human neurodegenerative diseases. To extend knowledge of the protection (protective activity) they offer, we investigated activities of natural cytokinins against salsolinol (SAL)-induced toxicity (a Parkinson’s disease model) and glutamate (Glu)-induced death of neuron-like dopaminergic SH-SY5Y cells. We found that kinetin-3-glucoside, cis-zeatin riboside, and N6-isopentenyladenosine were active in the SAL-induced PD model. In addition, trans-, cis-zeatin, and kinetin along with the iron chelator deferoxamine (DFO) and the necroptosis inhibitor necrostatin 1 (NEC-1) significantly reduced cell death rates in the Glu-induced model. Lactate dehydrogenase assays revealed that the cytokinins provided lower neuroprotective activity than DFO and NEC-1. Moreover, they reduced apoptotic caspase-3/7 activities less strongly than DFO. However, the cytokinins had very similar effects to DFO and NEC-1 on superoxide radical production. Overall, they showed protective activity in the SAL-induced model of parkinsonian neuronal cell death and Glu-induced model of oxidative damage mainly by reduction of oxidative stress.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 250 ◽  
Author(s):  
Adel Alhazzani ◽  
Prasanna Rajagopalan ◽  
Zaher Albarqi ◽  
Anantharam Devaraj ◽  
Mohamed Hessian Mohamed ◽  
...  

Cell-therapy modalities using mesenchymal stem (MSCs) in experimental strokes are being investigated due to the role of MSCs in neuroprotection and regeneration. It is necessary to know the sequence of events that occur during stress and how MSCs complement the rescue of neuronal cell death mediated by [Ca2+]i and reactive oxygen species (ROS). In the current study, SH-SY5Y-differentiated neuronal cells were subjected to in vitro cerebral ischemia-like stress and were experimentally rescued from cell death using an MSCs/neuronal cell coculture model. Neuronal cell death was characterized by the induction of proinflammatory tumor necrosis factor (TNF)-α, interleukin (IL)-1β and -12, up to 35-fold with corresponding downregulation of anti-inflammatory cytokine transforming growth factor (TGF)-β, IL-6 and -10 by approximately 1 to 7 fold. Increased intracellular calcium [Ca2+]i and ROS clearly reaffirmed oxidative stress-mediated apoptosis, while upregulation of nuclear factor NF-B and cyclo-oxygenase (COX)-2 expressions, along with ~41% accumulation of early and late phase apoptotic cells, confirmed ischemic stress-mediated cell death. Stressed neuronal cells were rescued from death when cocultured with MSCs via increased expression of anti-inflammatory cytokines (TGF-β, 17%; IL-6, 4%; and IL-10, 13%), significantly downregulated NF-B and proinflammatory COX-2 expression. Further accumulation of early and late apoptotic cells was diminished to 23%, while corresponding cell death decreased from 40% to 17%. Low superoxide dismutase 1 (SOD1) expression at the mRNA level was rescued by MSCs coculture, while no significant changes were observed with catalase (CAT) and glutathione peroxidase (GPx). Interestingly, increased serotonin release into the culture supernatant was proportionate to the elevated [Ca2+]i and corresponding ROS, which were later rescued by the MSCs coculture to near normalcy. Taken together, all of these results primarily support MSCs-mediated modulation of stressed neuronal cell survival in vitro.


2002 ◽  
Vol 383 (5) ◽  
pp. 785-791 ◽  
Author(s):  
Satavisha Dutta ◽  
Yuk Chun Chiu ◽  
Albert W. Probert ◽  
Kevin K.W. Wang

Abstract Activation of calpain results in the breakdown of α II spectrin (αfodrin), a neuronal cytoskeleton protein, which has previously been detected in various in vitro and in vivo neuronal injury models. In this study, a 150 kDa spectrin breakdown product (SBDP150) was found to be released into the cellconditioned media from SHSY5Y cells treated with the calcium channel opener maitotoxin (MTX). SBDP150 release can be readily quantified on immunoblot using an SBDP150- specific polyclonal antibody. Increase of SBDP150 also correlated with cell death in a timedependent manner. MDL28170, a selective calpain inhibitor, was the only protease inhibitor tested that significantly reduced MTXinduced SBDP150 release. The cellconditioned media of cerebellar granule neurons challenged with excitotoxins (NMDA and kainate) also exhibited a significant increase of SBDP150 that was attenuated by pretreatment with an NMDA receptor antagonist, R()-3-(2-carbopiperazine-4-yl)propyl-1- phosphonic acid (CPP), and MDL28170. In addition, hypoxic/hypoglycemic challenge of cerebrocortical cultures also resulted in SBDP150 liberation into the media. These results support the theory that an antibody based detection of SBDP150 in the cellconditioned media can be utilized to quantify injury to neural cells. Furthermore, SBDP150 may potentially be used as a surrogate biomarker for acute neuronal injury in clinical settings.


Life Sciences ◽  
1996 ◽  
Vol 58 (17) ◽  
pp. 1461-1467 ◽  
Author(s):  
Yuzo Nakagawa-Yagi ◽  
Nobuo Ogane ◽  
Yutaka Inoki ◽  
Naomi Kitoh

2002 ◽  
Vol 946 (2) ◽  
pp. 298-306 ◽  
Author(s):  
Shigeko Uryu ◽  
Shinya Tokuhiro ◽  
Takako Murasugi ◽  
Tomiichiro Oda

2018 ◽  
Vol 25 (8) ◽  
pp. 1394-1407 ◽  
Author(s):  
Goutham K. Ganjam ◽  
Nicole Angela Terpolilli ◽  
Sebastian Diemert ◽  
Ina Eisenbach ◽  
Lena Hoffmann ◽  
...  

2016 ◽  
Vol 28 (2) ◽  
pp. 130
Author(s):  
R. Sper ◽  
S. Simpson ◽  
X. Zhang ◽  
B. Collins ◽  
J. Piedrahita

Transgenic pigs are an attractive research model in the field of translational research, regenerative medicine, and stem cell therapy due to their anatomic, genetic, and physiological similarities with humans. The development of a transgenic murine model with a fusion of green fluorescent protein (GFP) to histone 2B protein (H2B, protein of nucleosome core) resulted in an easier and more convenient method for tracking cell migration and engraftment levels after transplantation as well as a way to better understand the complexity of molecular regulation within cell cycle/division, cancer biology, and chromosome dynamics. Up to now the development of a stable transgenic large animal model expressing H2B-GFP has not been described. Our objective was to develop the first transgenic porcine H2B-GFP model via CRISPR-CAS9 mediated recombination and somatic cell nuclear transfer (SCNT). Porcine fetal fibroblasts were cotransfected with CRISPR-CAS9 designed to target the 3′ untranslated region of ACTB locus and a targeting vector containing 1Kb homology arms to ACTB flanking an IRES-H2B-GFP transgene. Four days after transfection GFP cells were fluorescence activated cell sorted. Single cell colonies were generated and analysed by PCR, and heterozygous colonies were used as donor cells for SCNT. The custom designed CRISPR-CAS9 knockin system demonstrated a 2.4% knockin efficiency. From positive cells, 119 SCNT embryos were generated and transferred to a recipient gilt resulting in three positive founder boars (P1 generation). Boars show normal fertility (pregnancies obtained via AI of wild type sows). Generated P1 clones were viable and fertile with a transgene transmission rate of 55.8% (in concordance with Mendel’s law upon chi-square test with P = 0.05). Intranuclear H2B-GFP expression was confirmed via fluorescence microscopy on 8-day in vitro cultured SCNT blastocysts and a variety of tissues (heart, kidney, brain, bladder, skeletal muscle, stomach, skin, and so on) and primary cultured cells (chondrocytes, bone marrow derived, adipocyte derived, neural stem cells, and so on) from P1 cloned boars and F1 42-day fetuses and viable piglets. In addition, chromosome segregation could be easily identified during cell cycle division in in vitro cultured stem cells. Custom designed CRISPR-CAS 9 are able to drive homologous recombination in the ACTB locus in porcine fetal fibroblasts, allowing the generation of the first described viable H2B-GFP porcine model via SCNT. Generated clones and F1 generation expressed H2B-GFP ubiquitously, and transgene transmission rates were with concordance of Mendel’s law. This novel large animal model represents an improved platform for regenerative medicine and chromosome dynamic and cancer biology studies.


2012 ◽  
Vol 443 (3) ◽  
pp. 681-689 ◽  
Author(s):  
Wan Ning Vanessa Chow ◽  
Hon Wing Luk ◽  
Ho Yin Edwin Chan ◽  
Kwok-Fai Lau

An unstable expansion of the polyglutamine repeat within exon 1 of the protein Htt (huntingtin) causes HD (Huntington's disease). Mounting evidence shows that accumulation of N-terminal mutant Htt fragments is the source of disruption of normal cellular processes which ultimately leads to neuronal cell death. Understanding the degradation mechanism of mutant Htt and improving its clearance has emerged as a new direction in developing therapeutic approaches to treat HD. In the present study we show that the brain-enriched adaptor protein FE65 is a novel interacting partner of Htt. The binding is mediated through WW–polyproline interaction and is dependent on the length of the polyglutamine tract. Interestingly, a reduction in mutant Htt protein level was observed in FE65-knockdown cells, and the process requires the UPS (ubiquitin/proteasome system). Moreover, the ubiquitination level of mutant Htt was found to be enhanced when FE65 is knocked down. Immunofluroescence staining revealed that FE65 associates with mutant Htt aggregates. Additionally, we demonstrated that overexpression of FE65 increases mutant Htt-induced cell death both in vitro and in vivo. These results suggest that FE65 facilitates the accumulation of mutant Htt in cells by preventing its degradation via the UPS, and thereby enhances the toxicity of mutant Htt.


2017 ◽  
Vol 43 (5) ◽  
pp. 1866-1879 ◽  
Author(s):  
Peng Li ◽  
Kun Ma ◽  
Hao-Yu Wu ◽  
Yan-Ping Wu ◽  
Bai-Xiang Li

Background/Aims: Atrazine (ATR) is a broad-spectrum herbicide in wide use around the world. However, ATR is neurotoxic and can cause cell death in dopaminergic neurons, leading to neurodegenerative disorders. Autophagy is the basic cellular catabolic process involving the degradation of proteins and damaged organelles. Studies have shown that certain plant compounds can induce autophagy and prevent neuronal cell death. This prompted us to investigate plant compounds that might reduce the neurotoxic effects of ATR. Methods: By CCK-8 and flow cytometry, we tested the ability of five candidate compounds—isoflavones, resveratrol, quercetin, curcumin, and green tea polyphenols—to protect cells from ATR. Changes in the expression of tyrosine hydroxylase (TH) and brain-expressed X-linked 2 (BEX2), autophagy-related proteins and key factors in mTOR signaling, were detected by Western blotting. Results: Isoflavones had the strongest activity against ATR-induced neuronal apoptosis. ATR reduced the expression of TH and BEX2, whereas isoflavones increased TH and BEX2 expression. In addition, ATR inhibited autophagy, whereas isoflavones induced autophagy through the accumulation of LC3-II and decreased expression of p62; this effect was abolished by 3-methyladenine (3-MA). Furthermore, BEX2 siRNA abolished isoflavone-mediated autophagy and neuroprotection in vitro. Conclusion: Isoflavones activate BEX2-dependent autophagy, protecting against ATR-induced neuronal apoptosis.


Sign in / Sign up

Export Citation Format

Share Document