scholarly journals Functional integration of eye tissues and refractive eye development: Mechanisms and pathways

2021 ◽  
pp. 108693
Author(s):  
Jody A. Summers ◽  
Frank Schaeffel ◽  
Susana Marcos ◽  
Hao Wu ◽  
Andrei V. Tkatchenko
Author(s):  
C.V.L. Powell

The overall fine structure of the eye in Placopecten is similar to that of other scallops. The optic tentacle consists of an outer columnar epithelium which is modified into a pigmented iris and a cornea (Fig. 1). This capsule encloses the cellular lens, retina, reflecting argentea and the pigmented tapetum. The retina is divided into two parts (Fig. 2). The distal retina functions in the detection of movement and the proximal retina monitors environmental light intensity. The purpose of the present study is to describe the ultrastructure of the retina as a preliminary observation on eye development. This is also the first known presentation of scanning electron microscope studies of the eye of the scallop.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


1975 ◽  
Vol 14 (04) ◽  
pp. 301-309
Author(s):  
A. Marczak ◽  
A. Moszczyńska-Kowalska ◽  
H. Kowalski

SummaryThe relative solubility coefficient of 133Xe and the tissue-blood partition coefficient for the aqueous humour vitreous body, conjunctiva and external eye muscles of the rabbit were determined in vitro at 37° C and at various haematocrit values. The partition coefficient for haematocrit 40 was: for the aqueous humour 0,49 ml/ml, for the vitreous body 0,50 ml/ml, for the conjunctiva 0,81 ml/g and for the external eye muscles 0,77 ml/g. It was found that the solubility of 133Xe in rabbit erythrocytes is about 50 per cent higher than that in human red cells. The consequences of this fact for the precision of blood flow measurements by the method of tissue clearance are discussed.


2019 ◽  
Author(s):  
Adam Beachey ◽  
Harley Worthy ◽  
William David Jamieson ◽  
Suzanne Thomas ◽  
Benjamin Bowen ◽  
...  

<p>Functional integration of proteins with carbon-based nanomaterials such as nanotubes holds great promise in emerging electronic and optoelectronic applications. Control over protein attachment poses a major challenge for consistent and useful device fabrication, especially when utilizing single/few molecule properties. Here, we exploit genetically encoded phenyl azide photochemistry to define the direct covalent attachment of three different proteins, including the fluorescent protein GFP, to carbon nanotube side walls. Single molecule fluorescence revealed that on attachment to SWCNTs GFP’s fluorescence changed in terms of intensity and improved resistance to photobleaching; essentially GFP is fluorescent for much longer on attachment. The site of attachment proved important in terms of electronic impact on GFP function, with the attachment site furthest from the functional center having the larger effect on fluorescence. Our approach provides a versatile and general method for generating intimate protein-CNT hybrid bioconjugates. It can be potentially applied easily to any protein of choice; attachment position and thus interface characteristics with the CNT can easily be changed by simply placing the phenyl azide chemistry at different residues by gene mutagenesis. Thus, our approach will allow consistent construction and modulate functional coupling through changing the protein attachment position.</p>


2018 ◽  
Vol 15 (8) ◽  
pp. 743-750 ◽  
Author(s):  
Kresimir Ukalovic ◽  
Sijia Cao ◽  
Sieun Lee ◽  
Qiaoyue Tang ◽  
Mirza Faisal Beg ◽  
...  

Background: Recent work on Alzheimer's disease (AD) diagnosis focuses on neuroimaging modalities; however, these methods are expensive, invasive, and not available to all patients. Ocular imaging of biomarkers, such as drusen in the peripheral retina, could provide an alternative method to diagnose AD. Objective: This study compares macular and peripheral drusen load in control and AD eyes. Methods: Postmortem eye tissues were obtained from donors with a neuropathological diagnosis of AD. Retina from normal donors were processed and categorized into younger (<55 years) and older (>55 years) groups. After fixation and dissection, 3-6 mm punches of RPE/choroid were taken in macular and peripheral (temporal, superior, and inferior) retinal regions. Oil red O positive drusen were counted and grouped into two size categories: small (<63 μm) and intermediate (63-125 μm). Results: There was a significant increase in the total number of macular and peripheral hard drusen in older, compared to younger, normal eyes (p<0.05). Intermediate hard drusen were more commonly found in the temporal region of AD eyes compared to older normal eyes, even after controlling for age (p<0.05). Among the brain and eye tissues from AD donors, there was a significant relationship between cerebral amyloid angiopathy (CAA) severity and number of temporal intermediate hard drusen (r=0.78, p<0.05). Conclusion: Imaging temporal drusen in the eye may have benefit for diagnosing and monitoring progression of AD. Our results on CAA severity and temporal intermediate drusen in the AD eye are novel. Future studies are needed to further understand the interactions among CAA and drusen formation.


Sign in / Sign up

Export Citation Format

Share Document