The role of Glabridin in antifungal and anti-inflammation effects in Aspergillus fumigatus keratitis

2021 ◽  
pp. 108883
Author(s):  
Han Gao ◽  
Xudong Peng ◽  
Lu Zhan ◽  
Jing Lin ◽  
Yingxue Zhang ◽  
...  
2020 ◽  
Vol 52 (11) ◽  
pp. 1191-1201
Author(s):  
Ling Chen ◽  
Rongfu Tian ◽  
Huilin Zhang ◽  
Xiaolin Liu

Abstract NFκB1/p105 is the critical member of the NFκB family which can suppress inflammation, ageing, and cancer when p50/p50 homodimer is formed. Currently, the research about the role of NFκB1/p105 during cow mastitis is limited. Here, we analyzed the correlation of six single-nucleotide variants of the NFκB1 gene with somatic cell count, milk yield, milk fat content, and milk protein content in 547 Chinese Holstein cows, and explored the mRNA expression profiles of the NFκB family and ubiquitin ligases (βTrCP1, βTrCP2, KPC1, KPC2) in LPS-induced bovine mammary epithelial cells (MECs) by transcriptome-Seq. The association analysis showed that cows with SNV2-TT and SNV6-CC in the NFκB1 gene had significantly higher milk protein content (P < 0.05), while cows with SNV5-TT in the NFκB1 gene had significantly lower somatic cell score (SCS), but CC genotype at SNV5 locus was not detected in our Holstein cows. The transcriptome-Seq results demonstrated the mRNA expression of NFκB1 was increased and peaked at 4 h post-induction, while the mRNA expressions of both KPC1 and BCL3 that promote the anti-inflammation function of NFκB1/p105 were decreased in LPS-induced bovine MECs. TNFAIP3, an inhibitor of both degradation and processing of p105 precursor, was markedly increased by more than 3 folds. Furthermore, bta-miR-125b which targets at the 3ʹUTR of TNFAIP3 was reduced by 50%. These results indicated that SNV5-TT of the NFκB1 gene with lower SCS may be an anti-mastitis genotype that could cope with infection more efficiently in Chinese Holstein cows. In addition, the anti-inflammation role of NFκB1/p105 seemed to be inhibited in LPS-induced-bovine MECs because the formation of the p50/p50 homodimer was arrested. This study provides a new perspective to understand the inflammatory mechanism in dairy mastitis.


2014 ◽  
Vol 23 (1) ◽  
pp. 288-293 ◽  
Author(s):  
Li-ting Hu ◽  
Zhao-dong Du ◽  
Gui-qiu Zhao ◽  
Nan Jiang ◽  
Jing Lin ◽  
...  

Author(s):  
Mariana Handelman ◽  
Zohar Meir ◽  
Jennifer Scott ◽  
Yona Shadkchan ◽  
Wei Liu ◽  
...  

Aspergillus fumigatus is the most common cause of invasive fungal mold infections in immunocompromised individuals. Current antifungal treatment relies heavily on the triazole antifungals which inhibit fungal Erg11/Cyp51 activity and subsequent ergosterol biosynthesis. However, resistance, due primarily to cyp51 mutation, is rapidly increasing. A. fumigatus contains two Cyp51 isoenzymes, Cyp51A and Cyp51B. Overexpression and mutation of Cyp51A is a major cause of triazole resistance in A. fumigatus . The role of Cyp51B in generating resistance is unclear. Here we show that overexpression or mutation of cyp51B results in triazole resistance. We demonstrate that introduction of a G457S Cyp51B mutation identified in a resistant clinical isolate, results in voriconazole resistance in the naïve recipient strain. Our results indicate that mutations in cyp51B resulting in clinical resistance do exist and should be monitored.


2021 ◽  
Author(s):  
Marion Aruanno ◽  
Samantha Gozel ◽  
Isabelle Mouyna ◽  
Josie E Parker ◽  
Daniel Bachmann ◽  
...  

Abstract Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility. This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. Lay Summary A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.


2020 ◽  
Vol 26 (8) ◽  
pp. 1199-1211 ◽  
Author(s):  
Rong Lu ◽  
Mei Shang ◽  
Yong-Guo Zhang ◽  
Yang Jiao ◽  
Yinglin Xia ◽  
...  

Abstract Background Probiotic lactic acid bacteria (LAB) have been used in the anti-inflammation and anti-infection process of various diseases, including inflammatory bowel disease (IBD). Vitamin D receptor (VDR) plays an essential role in pathogenesis of IBD and infectious diseases. Previous studies have demonstrated that the human VDR gene is a key host factor to shape gut microbiome. Furthermore, intestinal epithelial VDR conditional knockout (VDRΔIEC) leads to dysbiosis. Low expressions of VDR is associated with impaired autophagy, accompanied by a reduction of ATG16L1 and LC3B. The purpose of this study is to investigate probiotic effects and mechanism in modulating the VDR-autophagy pathways. Methods Five LAB strains were isolated from Korean kimchi. Conditional medium (CM) from these strains was used to treat a human cell line HCT116 or intestinal organoids to measure the expression of VDR and autophagy. Mouse embryonic fibroblast (MEF) cells with or without VDR were used to investigate the dependence on the VDR signaling. To test the role of LAB in anti-inflammation, VDR+/+ organoids were treated with 121-CM before infection with Salmonella enterica serovar Enteritidis. In vivo, the role of LAB in regulating VDR-autophagy signaling was examined using LAB 121-CM orally administrated to VDRLoxp and VDRΔIEC mice. Results The LAB-CM-treated groups showed higher mRNA expression of VDR and its target genes cathelicidin compared with the control group. LAB treatment also enhanced expressions of Beclin-1 and ATG16L1 and changed the ratio of LC3B I and II, indicating the activation of autophagic responses. Furthermore, 121-CM treatment before Salmonella enterica serovar Enteritidis infection dramatically increased VDR and ATG16L1 and inhibited the inflammation. Administration of 121-CM to VDRLoxp and VDRΔIEC mice for 12 and 24 hours resulted in an increase of VDR and LC3B II:I ratio. Furthermore, we identified that probiotic proteins P40 and P75 in the LAB-CM contributed to the anti-inflammatory function by increasing VDR. Conclusions Probiotic LAB exert anti-inflammation activity and induces autophagy. These effects depend on the VDR expression. Our data highlight the beneficial effects of these 5 LAB strains isolated from food in anti-infection and anti-inflammation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Uta Düesberg ◽  
Julia Wosniok ◽  
Lutz Naehrlich ◽  
Patience Eschenhagen ◽  
Carsten Schwarz

Abstract Airway inflammation and chronic lung infections in cystic fibrosis (CF) patients are mostly caused by bacteria, e.g. Pseudomonas aeruginosa (PA). The role of fungi in the CF lung is still not well elucidated, but evidence for a harmful and complex role is getting stronger. The most common filamentous fungus in CF is Aspergillus fumigatus (AF). Age and continuous antibiotic treatment have been discussed as risk factors for AF colonisation but did not differentiate between transient and persistent AF colonisation. Also, the impact of co-colonisation of PA and AF on lung function is still under investigation. Data from patients with CF registered in the German Cystic Fibrosis Registry database in 2016 and 2017 were retrospectively analysed, involving descriptive and multivariate analysis to assess risk factors for transient or persistent AF colonisation. Age represented an independent risk factor for persistent AF colonisation. Prevalence was low in children less than ten years, highest in the middle age and getting lower in higher age (≥ 50 years). Continuous antibiotic lung treatment was significantly associated with AF prevalence in all age groups. CF patients with chronic PA infection had a lower lung function (FEV1%predicted), which was not influenced by an additional AF colonisation. AF colonisation without chronic PA infection, however, was significantly associated with a lower function, too. Older age up to 49 years and continuous antibiotic use were found to be the main risk factors for AF permanent colonisation. AF might be associated with decrease of lung function if not disguised by chronic PA infection.


PPAR Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Wanshun Wen ◽  
Jinlin Wang ◽  
Biyu Zhang ◽  
Jun Wang

Inflammation caused by neuropathy contributes to the development of neuropathic pain (NP), but the exact mechanism still needs to be understood. Peroxisome proliferator-activated receptor α (PPARα), an important inflammation regulator, might participate in the inflammation in NP. To explore the role of PPARα in NP, the effects of PPARα agonist WY-14643 on chronic constriction injury (CCI) rats were evaluated. The results showed that WY-14643 stimulation could decrease inflammation and relieve neuropathic pain, which was relative with the activation of PPARα. In addition, we also found that the SIRT1/NF-κB pathway was involved in the WY-14643-induced anti-inflammation in NP, and activation of PPARα increased SIRT1 expression, thus reducing the proinflammatory function of NF-κB. These data suggested that WY-14643 might serve as an inflammation mediator, which may be a potential therapy option for NP.


Sign in / Sign up

Export Citation Format

Share Document