Yield and potassium use efficiency of cotton with wheat straw incorporation and potassium fertilization on soils with various conditions in the wheat–cotton rotation system

2015 ◽  
Vol 172 ◽  
pp. 132-144 ◽  
Author(s):  
Ning Sui ◽  
Zhiguo Zhou ◽  
Chaoran Yu ◽  
Ruixian Liu ◽  
Changqin Yang ◽  
...  
2018 ◽  
Vol 16 (3) ◽  
pp. e1101 ◽  
Author(s):  
Zhibin Guo ◽  
Hui Liu ◽  
Keke Hua ◽  
Daozhong Wang ◽  
Chuanlong He

Soil pH and organic matter are important factors influencing phosphorus (P) fertilizer use efficiency. Long-term crop straw incorporation alters soil pH and soil organic matter. To explore the influence of crop straw incorporation on P fertilizer use efficiency, this research was conducted in a long-term field experiment (30 years) with a wheat-soybean cropping system and selected four treatments: no fertilization, mineral fertilization (NPK), mineral fertilization + 3750 kg/ha wheat straw (WS/2-NPK) and mineral fertilization + 7500 kg/ha wheat straw (WS-NPK). Results show that long-term straw incorporation not only accentuates soil acidification, but also elevates crop yields and soil P availability. Consequently, compared with the NPK treatment, straw incorporation contributed to higher P fertilizer use efficiency, which increased from 43% in 1983 to 72% in 2012 for WS/2-NPK, from 46% to 69% for WS-NPK, and from 34% to 60% for NPK treatments, respectively. Moreover, the P fertilizer use efficiency in all fertilization treatments could be categorized as follows: slowly increasing stage in 1982-2002, stable stage in 2003-2006, and rapidly increasing stage in 2007-2012. Correspondingly, the annual P balances of the WS/2-NPK and WS-NPK treatments ranged from positive to negative in the 1982-2003 and 2004-2012. Therefore, compared with mineral fertilization alone, long-term wheat straw incorporation has the associated benefit of elevating the P fertilizer use efficiency. However, to maintain sustainable high crop productivity, it is necessary to elevate the dose of P fertilizer input and reduce the soil acidification under wheat straw incorporation.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 243 ◽  
Author(s):  
Yufeng Zou ◽  
Hao Feng ◽  
Shufang Wu ◽  
Qin’ge Dong ◽  
Kadambot H. M. Siddique

Water shortage and excessive chemical fertilizers application result in low soil water and nutrient availability and limit crop production in the Loess Plateau of Northwest China. Ammoniated straw incorporation with N fertilization may be an efficient strategy to maintain agricultural sustainability. However, the interactive effects of straw incorporation and N fertilizer on the biomass water use efficiency (WUE) in the winter wheat–summer maize rotation system remain unclear. A 3-year field experiment was conducted to evaluate the effects of combining ammoniated straw incorporation and N fertilizer on soil water, biomass yield and biomass water use efficiency (WUE) in an annual summer maize (Zea mays L.)—Winter wheat (Triticum aestivum L.) rotation system. There were three treatments: (i) long straw (5 cm) mulching with N fertilizer (CK), (ii) long straw with N fertilizer plowed into the soil (LP), and (iii) ammoniated long straw with N fertilizer plowed into the soil (ALP). Compared with the CK treatment, LP and ALP led to a similar soil water storage capacity. ALP improved summer maize biomass yield and winter wheat biomass yield at the jointing-maturity stage. ALP improved summer maize WUE at the ten-leaf collar-tasseling stage and winter wheat WUE from the tillering stage to the maturity stage. Also, the ALP treatment increased the total water use efficiency (TWUE) of winter wheat by 4.1–22.0%. Overall, ammoniated straw incorporation produced the most favorable biomass yield and WUE in the summer maize—Winter wheat rotation system in the Loess Plateau of China.


1987 ◽  
Vol 67 (4) ◽  
pp. 825-834 ◽  
Author(s):  
M. S. AULAKH ◽  
D. A. RENNIE

The effects of wheat straw incorporation on denitrification, immobilization of N, and C mineralization were investigated at H2O contents of 60, 90 and 120% saturation. Incorporation of increasing levels of straw consistently increased the rate of denitrification for the first 4–8 d, followed by negligible N losses thereafter. In a total period of 96 d, the addition of 1.0% straw increased N losses from 2.5 to 10.1, and from 61.6 to 83.9 μg g−1 in the 60 and 120% water saturation treatments, respectively. The pattern of CO2-C evolved was practically identical to that of the denitrification rate for the initial period when sufficient [Formula: see text] was present. This study has confirmed that in flooded soils, high rates of denitrification will persist only when C is supplied by native or applied organic C sources, provided adequate [Formula: see text] is present. When [Formula: see text] was low, denitrification rates rapidly decreased, even with a sufficient supply of C. Immobilization of fertilizer N (50 μg N g−1 as K15NO3) was very rapid. Around 90% of the total immobilization of applied N occurred within 4 d. Incorporation of 1.0% straw increased the immobilization of fertilizer N from 8.4 to 42.8, and from 1.0 to 7.6% in the 60 and 120% water-saturated treatments, respectively. Remineralization of recently immobilized fertilizer N was observed after 32 d in the 60% saturation treatments only. Key words: Denitrification, wheat straw, mineralization of N


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chen Wang ◽  
Xuehong Ma ◽  
Gang Wang ◽  
Guitong Li ◽  
Kun Zhu

AbstractSoil O2 dynamics have significant influences on greenhouse gas emissions during soil management practice. In this study, we deployed O2-specific planar optodes to visualize spatiotemporal distribution of O2 in soils treated with biological soil disinfestation (BSD). This study aimed to reveal the role of anoxia development on emissions of N2O and CH4 from soil amended with crop residues during BSD period. The incorporation of crop residues includes wheat straw only, wheat straw with biochar and early straw incorporation. The anoxia in soil developed very fast within 3 days, while the O2 in headspace decreased much slower and it became anaerobic after 5 days, which was significantly affected by straw and biochar additions. The N2O emissions were positively correlated with soil hypoxic fraction. The CH4 emissions were not significant until the anoxia dominated in both soil and headspace. The co-application of biochar with straw delayed the anoxia development and extended the hypoxic area in soil, resulting in lower emissions of N2O and CH4. Those results highlight that the soil O2 dynamic was the key variable triggering the N2O and CH4 productions. Therefore, detailed information of soil O2 availability could be highly beneficial for optimizing the strategies of organic amendments incorporation in the BSD technique.


2014 ◽  
Vol 9 (4) ◽  
pp. 455-464 ◽  
Author(s):  
Ramos Guelfi Silva Douglas ◽  
Roberto Spehar Carlos ◽  
Marchi Giuliano ◽  
de Arajo Soares Danilo ◽  
Lopes Cancellier Eduardo ◽  
...  

Author(s):  
Carlos N. V. Fernandes ◽  
Benito M. de Azevedo ◽  
Débora C. Camargo ◽  
Chrislene N. Dias ◽  
Mario de O. Rebouças Neto ◽  
...  

ABSTRACT Aiming to evaluate the effect of potassium (K) doses applied by the conventional method and fertigation in zucchini (Cucurbita pepo L.), a field experiment was conducted in Fortaleza, CE, Brazil. The statistical design was a randomized block, with four replicates, in a 4 x 2 factorial scheme, which corresponded to four doses of K (0, 75, 150 and 300 kg K2O ha-1) and two fertilization methods (conventional and fertigation). The analyzed variables were: fruit mass (FM), number of fruits (NF), fruit length (FL), fruit diameter (FD), pulp thickness (PT), soluble solids (SS), yield (Y), water use efficiency (WUE) and potassium use efficiency (KUE), besides an economic analysis using the net present value (NPV), internal rate of return (IRR) and payback period (PP). K doses influenced FM, FD, PT and Y, which increased linearly, with the highest value estimated at 36,828 kg ha-1 for the highest K dose (300 kg K2O ha-1). This dose was also responsible for the largest WUE, 92 kg ha-1 mm-1. KUE showed quadratic behavior and the dose of 174 kg K2O ha-1 led to its maximum value (87.41 kg ha-1 (kg K2O ha-1)-1). All treatments were economically viable, and the most profitable months were May, April, December and November.


2011 ◽  
Vol 42 (2) ◽  
pp. 132-143 ◽  
Author(s):  
Ying Xia ◽  
Cuncang Jiang ◽  
Fang Chen ◽  
Jianwei Lu ◽  
Yunhua Wang

Sign in / Sign up

Export Citation Format

Share Document