Optimizing nitrogen input by balancing winter wheat yield and residual nitrate-N in soil in a long-term dryland field experiment in the Loess Plateau of China

2015 ◽  
Vol 181 ◽  
pp. 32-41 ◽  
Author(s):  
Jian Dai ◽  
Zhaohui Wang ◽  
Fucui Li ◽  
Gang He ◽  
Sen Wang ◽  
...  
Soil Research ◽  
2008 ◽  
Vol 46 (5) ◽  
pp. 455 ◽  
Author(s):  
Ke Jin ◽  
Stefaan De Neve ◽  
Bram Moeskops ◽  
Junjie Lu ◽  
Jie Zhang ◽  
...  

One of the most important problems in the Loess Plateau of China affecting sustainable agriculture is inefficient nutrient use. Field experiments were conducted to study the effects of different soil management practices on the nitrogen (N) dynamics and winter wheat yield on a loess soil in Luoyang, Henan province, China. The results showed that subsoiling with mulch (SS) consistently increased the yield of winter wheat primarily by better water harvest compared with conventional tillage (CT). The influence on yield of no till with mulch (NT) depended on the amount of precipitation. TC (2 crops per year) lowered the winter wheat yield mainly due to the unfavourable soil moisture conditions after growing peanut in summer; however, the harvested peanut gained an extra profit for the local farmer. N uptake by grain and straw and N export was highest for SS. Changes in frequency and intensity of tillage practice altered soil total N content and its distribution along the slope. SS and NT increased the N content of the surface layer (0–0.20 m) compared with CT, but there was no significant effect in deeper soil layers. Considerable amounts of nitrate-N were left in the profile 0–1.60 cm just after harvest under all treatments. The cumulative nitrate-N content to a depth of 1.60 m on average was 282 kg/ha, of which 56 kg/ha was in the layer 1.20–1.60 m, which is an indication of considerable nitrate leaching. From data of 7 consecutive years between 1999 and 2006, it could be concluded that SS resulted in the highest yield and total N content in the surface layer, and is the most sustainable tillage option for the circumstances of the study area.


2010 ◽  
Vol 59 (1) ◽  
pp. 135-144 ◽  
Author(s):  
E. Bertáné Szabó ◽  
J. Loch ◽  
Gy. Zsigrai ◽  
L. Blaskó

The effects of regular NPK fertilization on the amounts of winter wheat yield and the amounts and proportion of different N forms (NO 3 -N, NH 4 -N, N org , N total ) of a Luvic Phaeosem soil determined in 0.01 M CaCl 2 were studied in the B1740 variant of the National Long-Term Fertilization Experiment at Karcag. According to the yield data, N and P fertilization increased winter wheat yield significantly. When applying the 200 kg N·ha -1 dose, P fertilization resulted in a more than 2 t·ha -1 yield increase, as compared to the treatments without P fertilization. K fertilization had no effect on the yield, similarly to preceding years. These findings may be adapted to fields of the Middle-Tisza Region with similar conditions to the trial site. The N forms of the soil determined in CaCl 2 reflected fertilization well. All of the fractions, but especially NO 3 -N and N total , increased significantly in response to N fertilization. Close relationships (r = 0.87–0.88) were found among the NO 3 -N and N total fractions and the N balance, which means that the amounts of NO 3 -N and N total are suitable for assessing both the N deficit and the N surplus. The strength of the correlation between the NH 4 -N content and N balance was moderate (r = 0.65). The N org fraction increased significantly as a function of N and P fertilization. These results can be explained with the yield increase. A significant correlation (r = 0.55) was found between the N org fraction and yield amounts. It can be established that organic residuals remaining on the site resulted in a significant increase in the N org content of soils. The gained results confirm that the N org fraction is suitable for the characterization of the readily mobilizable N reserves previously ignored in fertilization practice. On the basis of the presented results the CaCl 2 method is recommended for the precise estimation of nutrient requirements.


2008 ◽  
Vol 100 (6) ◽  
pp. 1527-1534 ◽  
Author(s):  
Zhenling Cui ◽  
Xinping Chen ◽  
Yuxin Miao ◽  
Fei Li ◽  
Fusuo Zhang ◽  
...  

Author(s):  
M. V. Pashkova

Relevance of the research. Winter wheat is considered to be a leading cereal crop. One of the area of stabilizing this crop production is to intensify its cultivation on the drained soils of Polissya. Due to the changes in external factors (global and regional climate change, soils, etc.) and technology, the question of modeling the process of crop productivity formation remains relevant. Objective of the research was to evaluate the impact of climate change (increase of average air temperature) on the winter wheat yield on the drained lands of Western Polissya when applying different fertilizer systems. Research methodology. The research was conducted in a stationary long-term field experiment of the Volyn State Agricultural Research Station of NAAS. The following fertilizer systems were investigated: control (without fertilizers); organic fertilizer – green manure crop; mineral fertilizer - N60P60K60 + lime; organic-mineral fertilizer - N60P60K60 + green manure crop + lime. In the course of the study, a systematic analysis of long-term results of field experiments and meteorological observations using mathematical and statistical methods, correlation and regression analysis were used. Research results. The coefficient of yield variation over the years of research on a variant without fertilizers reached 27%, against 19% for the organic-mineral fertilizer system. Applying the fertilizers helped to reduce the variability of winter wheat yield by 19 - 23%. Correlation analysis of winter wheat yields in view of the average air temperature of the early spring period (from the second decade of February to the first decade of April) was 0.85. Low air temperatures in this period indicate the late dates of the beginning of spring crop vegetation, which negatively affected wheat productivity. Relatively high temperatures contribute to earlier spring processes and, accordingly, positively affected the yield formation. The correlation coefficient of the average air temperature and wheat yield in the spring-summer period (second decade of April - the second decade of July) was - 0.71. Conclusions. The highest efficiency on sod-podzoliс drained soils is provided by applying organic-mineral fertilizer system. The average wheat grain yield when applying this fertilizer system was 5,7 ton per hectare (+ 38% over control). The application of balanced fertilizer systems reduces the amplitude of grain yield fluctuations from 27% to 19%. The temperature regime in the period from the 2nd decade of February – till the 1t decade of April has a significant effect on the yield of winter wheat grains. Having the average temperatures over 5оC, yields increased by 1-1,5 ton per hectare, and on the contrary, rise of average temperatures in the spring-summer period more than 16оC significantly reduced this index. The established mathematical dependences enabled to estimate the projected winter wheat yield by the analysis of the temperature regime over the years. The conducted research and established features make it possible to calculate the projected winter wheat yields by the temperature regime of the period from the end of February till the beginning of April. The study of the interrelation between the crop productivity and the combined action of temperature and water regime is supposed to be the next stage of the research.


2014 ◽  
Vol 106 (4) ◽  
pp. 1169-1178 ◽  
Author(s):  
Liang He ◽  
James Cleverly ◽  
Chao Chen ◽  
Xiaoya Yang ◽  
Jun Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document