scholarly journals Water use efficiency and optimal supplemental irrigation in a high yield wheat field

2017 ◽  
Vol 213 ◽  
pp. 213-220 ◽  
Author(s):  
Dong Wang
Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 802 ◽  
Author(s):  
Zhou ◽  
Hu ◽  
Zhou ◽  
Wang ◽  
Ran

In order to improve the water use efficiency (WUE) of spring maize in northwest China, the irrigation strategy of adopting limited supplemental irrigation following a high quota pre-sowing irrigation was evaluated under field conditions in 2016 and 2018. There were three treatments (W1, W2 and W3) differing in designed wetting depth (Dh) where soil water was replenished. Dh in W1, W2 and W3 were 0–40, 0–50 and 0–60 cm, respectively. The limited supplemental irrigation was adopted to improve soil water content (SWC) within Dh to field capacity (θFC) when SWC within 0–40 cm layer decreased to 60%θFC following a high rate of pre-sowing irrigation. Results showed that the smaller Dh was beneficial for improving root length density and enhance the utilization of water in subsoil. In both seasons, different Dh led to similar grain yields, which were comparable to the typical regional yield (14.3 t ha−1). The highest WUE (2.79 kg m−3) was achieved in W1 and was 13% more than the typical regional level of 2.46 kg m−3, implying it was adequate for achieving high yield and WUE to maintain SWC in 0–40 cm above 60% θFC with not replenishing soil water in 40–100 cm during the growth season after pre-sowing irrigation.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 194 ◽  
Author(s):  
Sonja Blankenagel ◽  
Zhenyu Yang ◽  
Viktoriya Avramova ◽  
Chris-Carolin Schön ◽  
Erwin Grill

To improve sustainability of agriculture, high yielding crop varieties with improved water use efficiency (WUE) are needed. Despite the feasibility of assessing WUE using different measurement techniques, breeding for WUE and high yield is a major challenge. Factors influencing the trait under field conditions are complex, including different scenarios of water availability. Plants with C3 photosynthesis are able to moderately increase WUE by restricting transpiration, resulting in higher intrinsic WUE (iWUE) at the leaf level. However, reduced CO2 uptake negatively influences photosynthesis and possibly growth and yield as well. The negative correlation of growth and WUE could be partly disconnected in model plant species with implications for crops. In this paper, we discuss recent insights obtained for Arabidopsis thaliana (L.) and the potential to translate the findings to C3 and C4 crops. Our data on Zea mays (L.) lines subjected to progressive drought show that there is potential for improvements in WUE of the maize line B73 at the whole plant level (WUEplant). However, changes in iWUE of B73 and Arabidopsis reduced the assimilation rate relatively more in maize. The trade-off observed in the C4 crop possibly limits the effectiveness of approaches aimed at improving iWUE but not necessarily efforts to improve WUEplant.


2014 ◽  
Vol 13 (11) ◽  
pp. 2378-2388 ◽  
Author(s):  
Cheng-yan ZHENG ◽  
Zhen-wen YU ◽  
Yu SHI ◽  
Shi-ming CUI ◽  
Dong WANG ◽  
...  

2013 ◽  
Vol 153 (1) ◽  
pp. 90-101 ◽  
Author(s):  
X. B. Zhou ◽  
Y. H. Chen ◽  
Z. Ouyang

SUMMARYProductivity and water resource usage efficiency are crucial issues in sustainable agriculture. The aims of the present research were to compare and evaluate the soil moisture content (SMC), evapotranspiration (ETa), yield, water-use efficiency (WUE), and net return of winter wheat (Triticum aestivum L.) and soybean [Glycine max (L.) Merr.] under different plant population distribution patterns and to identify the possible ways to improve water utilization. Using the same plant population for a given crop, the experiments consisted of four spacings between rows (row spacings) for winter wheat (cvar Shannong 919) under both rainfed and irrigated conditions and five row spacings for summer soybean (cvar Ludou 4) under rainfed conditions. For winter wheat, the stem number with row spacing of 49 cm was the lowest in all treatments. The SMC was enhanced by irrigation, particularly at the 10–40 cm depth. The yield and WUE were negatively correlated with row spacing and were greater with narrower row spacing than with wider rows. For soybean, SMC in uniform distribution (spacing between plants) treatments was greater at lower depths than at shallower depths for each row spacing treatment. A high yield, WUE and net return of winter wheat and soybean can be achieved with narrower row spacing. Combining winter wheat row spacing of 14 cm with soybean row spacing of 18 cm and soybean row spacing of 27 cm is a highly suitable planting system for the plains of Northern China.


Sign in / Sign up

Export Citation Format

Share Document