scholarly journals Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries

2005 ◽  
Vol 52 (1) ◽  
pp. 115-128 ◽  
Author(s):  
Anne E. Bernhard ◽  
Debbie Colbert ◽  
James McManus ◽  
Katharine G. Field
PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93827 ◽  
Author(s):  
Rachel Poretsky ◽  
Luis M. Rodriguez-R ◽  
Chengwei Luo ◽  
Despina Tsementzi ◽  
Konstantinos T. Konstantinidis

2019 ◽  
Author(s):  
Miguel I. Uyaguari-Diaz ◽  
Matthew A. Croxen ◽  
Kirby Cronin ◽  
Zhiyao Luo ◽  
Judith Isaac-Renton ◽  
...  

AbstractTraditional methods for monitoring the microbiological quality of water focus on the detection of fecal indicator bacteria such as Escherichia coli, often tested as a weekly grab sample. To understand the stability of E.coli concentrations over time, we evaluated three approaches to measuring E. coli levels in water: microbial culture using Colilert, quantitative PCR for uidA and next-generation sequencing of the 16S rRNA gene. Two watersheds, one impacted by agricultural and the other by urban activities, were repeatedly sampled over a simultaneous ten-hour period during each of the four seasons. Based on 16S rRNA gene deep sequencing, each watershed showed different microbial community profiles. The bacterial microbiomes varied with season, but less so within each 10-hour sampling period. Enterobacteriaceae comprised only a small fraction (<1%) of the total community. The qPCR assay detected significantly higher quantities of E. coli compared to the Colilert assay and there was also variability in the Colilert measurements compared to Health Canada’s recommendations for recreational water quality. From the 16S data, other bacteria such as Prevotella and Bacteroides showed promise as alternative indicators of fecal contamination. A better understanding of temporal changes in watershed microbiomes will be important in assessing the utility of current biomarkers of fecal contamination, determining the best timing for sample collection, as well as searching for additional microbial indicators of the health of a watershed.


2020 ◽  
Vol 8 (8) ◽  
pp. 1245
Author(s):  
Cyrus Rutere ◽  
Kirsten Knoop ◽  
Malte Posselt ◽  
Adrian Ho ◽  
Marcus A. Horn

Ibuprofen, a non-steroidal anti-inflammatory pain reliever, is among pharmaceutical residues of environmental concern ubiquitously detected in wastewater effluents and receiving rivers. Thus, ibuprofen removal potentials and associated bacteria in the hyporheic zone sediments of an impacted river were investigated. Microbially mediated ibuprofen degradation was determined in oxic sediment microcosms amended with ibuprofen (5, 40, 200, and 400 µM), or ibuprofen and acetate, relative to an un-amended control. Ibuprofen was removed by the original sediment microbial community as well as in ibuprofen-enrichments obtained by re-feeding of ibuprofen. Here, 1-, 2-, 3-hydroxy- and carboxy-ibuprofen were the primary transformation products. Quantitative real-time PCR analysis revealed a significantly higher 16S rRNA abundance in ibuprofen-amended relative to un-amended incubations. Time-resolved microbial community dynamics evaluated by 16S rRNA gene and 16S rRNA analyses revealed many new ibuprofen responsive taxa of the Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria, and Proteobacteria. Two ibuprofen-degrading strains belonging to the genera Novosphingobium and Pseudomonas were isolated from the ibuprofen-enriched sediments, consuming 400 and 300 µM ibuprofen within three and eight days, respectively. The collective results indicated that the hyporheic zone sediments sustain an efficient biotic (micro-)pollutant degradation potential, and hitherto unknown microbial diversity associated with such (micro)pollutant removal.


2020 ◽  
Vol 148 ◽  
pp. 01002
Author(s):  
Herto Dwi Ariesyady ◽  
Mentari Rizki Mayanda ◽  
Tsukasa Ito

Activated sludge process is one of the wastewater treatment method that is applied for many wastewater types including painting process wastewater of automotive industry. This wastewater is well-known to have high heavy metals concentration which could deteriorate water environment if appropriate performance of the wastewater treatment could not be achieved. In this study, we monitored microbial community diversity in a Painting Biological Treatment (PBT) system. We applied a combination of cultivation and genotypic biological methods based on 16S rRNA gene sequence analysis to identify the diversity of active microbial community. The results showed that active microbes that could grow in this activated sludge system were dominated by Gram-negative bacteria. Based on 16S rRNA gene sequencing analysis, it was revealed that their microbial diversity has close association with Bacterium strain E286, Isosphaera pallida, Lycinibacillus fusiformis, Microbacterium sp., Orchobactrum sp., Pseudomonas guariconensis, Pseudomonas sp. strain MR84, Pseudomonas sp. MC 54, Serpens sp., Stenotrophomonas acidaminiphila, and Xylella fastidiosa with similarity of 86 – 99%. This findings reflects that microbial community in a Painting Biological Treatment (PBT) system using activated sludge process could adapt with xenobiotics in the wastewater and has a wide range of diversity indicating a complex metabolism mechanism in the treatment process.


2014 ◽  
Vol 48 (8) ◽  
pp. 717-728 ◽  
Author(s):  
M. N. Zakaria ◽  
T. Takeshita ◽  
Y. Shibata ◽  
H. Maeda ◽  
N. Wada ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhou Jiang ◽  
Ping Li ◽  
Yanhong Wang ◽  
Han Liu ◽  
Dazhun Wei ◽  
...  

Abstract Microbial metabolisms of arsenic, iron, sulfur, nitrogen and organic matter play important roles in arsenic mobilization in aquifer. In this study, microbial community composition and functional potentials in a high arsenic groundwater were investigated using integrated techniques of RNA- and DNA-based 16S rRNA gene sequencing, metagenomic sequencing and functional gene arrays. 16S rRNA gene sequencing showed the sample was dominated by members of Proteobacteria (62.3–75.2%), such as genera of Simplicispira (5.7–6.7%), Pseudomonas (3.3–5.7%), Ferribacterium (1.6–4.4%), Solimonas (1.8–3.2%), Geobacter (0.8–2.2%) and Sediminibacterium (0.6–2.4%). Functional potential analyses indicated that organics degradation, assimilatory sulfate reduction, As-resistant pathway, iron reduction, ammonification, nitrogen fixation, denitrification and dissimilatory nitrate reduction to ammonia were prevalent. The composition and function of microbial community and reconstructed genome bins suggest that high level of arsenite in the groundwater may be attributed to arsenate release from iron oxides reductive dissolution by the iron-reducing bacteria, and subsequent arsenate reduction by ammonia-producing bacteria featuring ars operon. This study highlights the relationship between biogeochemical cycling of arsenic and nitrogen in groundwater, which potentially occur in other aquifers with high levels of ammonia and arsenic.


2020 ◽  
Vol 81 (5) ◽  
pp. 891-905
Author(s):  
Adam Skoyles ◽  
Subba Rao Chaganti ◽  
Scott O. C. Mundle ◽  
Chris G. Weisener

Abstract A comparative bench-scale and field site analysis of BioCord was conducted to investigate seasonal microbial community dynamics and its impact on nitrogen removal in wastewater. This was assessed using metabolite (NO3−) stable isotope analysis, high-throughput sequencing of the 16S rRNA gene, and RT-qPCR of key genes in biological treatment representing nitrification, anammox, and denitrification. Bench-scale experiments showed an increase in nitrifiers with increasing ammonia loading resulting in an ammonia removal efficiency up to 98 ± 0.14%. Stable isotope analysis showed that 15ɛ and δ18ONO3 could be used in monitoring the efficiency of the enhanced biological nitrification. In the lagoon field trials, an increase in total nitrogen promoted three principle nitrifying genera (Nitrosomonas, Nitrospira, Candidatus Nitrotoga) and enhanced the expression of denitrification genes (nirK, norB, and nosZ). Further, anaerobic ammonia oxidizers were active within BioCord biofilm. Even at lower temperatures (2–6°C) the nitrifying bacteria remained active on the BioCord.


Sign in / Sign up

Export Citation Format

Share Document