Advanced follicle development in xenografted prepubertal ovarian tissue: the common marmoset as a nonhuman primate model for ovarian tissue transplantation

2011 ◽  
Vol 95 (4) ◽  
pp. 1428-1434 ◽  
Author(s):  
Viktoria von Schönfeldt ◽  
Ramesh Chandolia ◽  
Ludwig Kiesel ◽  
Eberhard Nieschlag ◽  
Stefan Schlatt ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Nelson ◽  
M. Loveday

The common marmoset (Callithrix jacchus) is increasingly being utilised as a nonhuman primate model for human disease, ranging from autoimmune to infectious disease. In order to fully exploit these models, meaningful comparison to the human host response is necessary. Commercially available reagents, primarily targeted to human cells, were utilised to assess the phenotype and activation status of key immune cell types and cytokines in naive and infected animals. Single cell suspensions of blood, spleen, and lung were examined. Generally, the phenotype of cells was comparable between humans and marmosets, with approximately 63% of all lymphocytes in the blood of marmosets being T cells, 25% B-cells, and 12% NK cells. The percentage of neutrophils in marmoset blood were more similar to human values than mouse values. Comparison of the activation status of cells following experimental systemic or inhalational infection exhibited different trends in different tissues, most obvious in cell types active in the innate immune response. This work significantly enhances the ability to understand the immune response in these animals and fortifies their use as models of infectious disease.


Author(s):  
Makoto Hosoya ◽  
Masato Fujioka ◽  
Ayako Y Murayama ◽  
Hiroyuki Ozawa ◽  
Hideyuki Okano ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5530-5530
Author(s):  
Peter A. Horn ◽  
Melanie Wurm ◽  
Ryo Kurita ◽  
Tomoko Yokoo ◽  
Rainer Blasczyk ◽  
...  

Abstract Preclinical animal models are important for evaluating the safety and therapeutic efficacy of new therapeutic modalities such as gene therapy. From the different large animal models, nonhuman primate models have emerged over the last decades as highly desirable experimental systems from both a pathophysiologic and pharmacokinetic viewpoint and the study of nonhuman primates has provided important information on the efficacy and safety of gene therapy systems in vivo prior to human trials. The common marmoset (Callithrix jacchus) has the advantage that it is a small, and thus relatively inexpensive nonhuman primate model. Currently, very little data on the transduction efficiency of foamyviral vectors for gene transfer into marmoset stem cells exists. We therefore performed a direct comparison using identically designed gammaretroviral, lentiviral and foamyviral vector constructs expressing the enhanced green fluorescent protein (EGFP) from the spleen focus forming virus (SFFV) promoter pseudotyped with either the modified human foamy virus (HFV) envelope EM140 or the G-protein of vesicular stomatitis virus (VSV-G) for the transduction of common marmoset embryonic stem cells (CMES) as well as marmoset CD34+ hematopoietic progenitor cells. Virus stocks of these vectors were prepared by polyethyleneimine-mediated transfection of 293T cells and concentrated approximately 10-fold by centrifugation for 4 hours at 10.000 g at 4°C. Three different target cell populations were transduced: common marmoset embryonic stem cells (CMES) or cryopreserved CD34-enriched cells from bone marrow of a common marmoset either after a two-day prestimulation in the presence of IL-6, FLT3L, cSCF and TPO at a concentration of 100 ng/mL each, or after overnight incubation with 100 ng/mL SCF only. Equal numbers of cells were exposed to the four different vector preparations for 14 hours in 12-well dishes coated with CH-296. The read-out was based on fluorescence microscopy of colonies plated in methyl cellulose as well as flow cytometry (FACS). Foamyviral vectors with the foamyviral envelope were the most efficient gene transfer tool for marmoset hematopoietic CD34-positive cells with stable transduction rates of over 80% as assessed by flow cytometry at both 2 or 7 days after the end of transduction and on average 88% transduction efficiency into colony forming cells (CFU-C). Transduction of CFU-C with all other vector preparations was below 60%. In CMES, initial gene transfer rates of over 80% were achieved with the VSV-G pseudotype lentiviral vector, however, expression decreased to 13% after 7 days. In contrast, the foamyviral vector pseudotyped with the foamyviral envelope decreased only from 49% to 24% after 7 days. In conclusion, we achieved stable viral gene transfer and expression in CMES cells as well as highly efficient gene transfer into common marmoset hematopoietic CD34 positive cells using foamyviral vectors. These results suggest that foamyviral vectors may be highly feasible vectors for stem cell gene transfer and thus set the stage for a more detailed analysis of this vector system in transplantation studies in this nonhuman primate model.


2015 ◽  
Vol 212 (12) ◽  
pp. 1904-1913 ◽  
Author(s):  
Jasper Fuk-Woo Chan ◽  
Yanfeng Yao ◽  
Man-Lung Yeung ◽  
Wei Deng ◽  
Linlin Bao ◽  
...  

2020 ◽  
Vol 9 (9) ◽  
pp. 2980 ◽  
Author(s):  
Luciana Cacciottola ◽  
Thu Y. T. Nguyen ◽  
Maria C. Chiti ◽  
Alessandra Camboni ◽  
Christiani A. Amorim ◽  
...  

(1) Background: Ovarian tissue transplantation with adipose tissue-derived stem cells (ASCs) has been shown to enhance graft vascularization and increase follicle survival after a short interval of 7 days. The aim of the present study was to investigate their long-term effects on primordial follicle pool maintenance and follicle development. (2) Methods: A total of 14 severe combined immunodeficient (SCID) mice were grafted with frozen-thawed human ovarian tissue with or without ASCs. Blood was taken monthly in order to quantify the anti-Müllerian hormone (AMH) and estradiol. After 6 months, all the grafts were retrieved and sent for histology and immunolabeling (AMH, AMH receptor II, estrogen receptors α and β, and c-kit/kit ligand). (3) Results: A significant upturn was observed in AMH and estradiol plasma levels 4 months after transplantation in both grafted groups. The primordial follicle pool was better preserved in the ASC group (41.86 ± 28.35) than in the standard transplantation group (9.65 ± 17.6, p < 0.05) compared to non-grafted controls (124.7 ± 140). (4) Conclusions: The use of ASCs prior to ovarian tissue transplantation yielded a larger primordial follicle pool and more physiological follicle distribution after long-term grafting. These findings suggested that ASC use might extend the ovarian tissue lifespan.


2009 ◽  
Vol 83 (11) ◽  
pp. 5806-5814 ◽  
Author(s):  
Trudie Weatherford ◽  
Deborah Chavez ◽  
Kathleen M. Brasky ◽  
Robert E. Lanford

ABSTRACT Worldwide, approximately 170 million people are chronically infected with hepatitis C virus (HCV), and chronic infection frequently progresses to serious liver disease, including cirrhosis and hepatocellular carcinoma. GB virus B (GBV-B), the virus phylogenetically most closely related to HCV, causes hepatitis in tamarins. We have demonstrated the suitability of the tamarin as a host for GBV-B and as a surrogate nonhuman primate model for HCV infection, and we have initiated studies of GBV-B infection in a closely related species, the common marmoset (Callithrix jacchus). Here, we demonstrate that marmosets exhibit two phenotypes upon infection with GBV-B: the susceptible phenotype and the partially resistant phenotype. In addition, we identify changes that may correlate with adaptation of the virus to the partially resistant host. GBV-B was serially passaged five times through 14 marmosets as one lineage and two times through 6 marmosets as a second lineage. Virus adapted to the marmosets and eventually exhibited robust infections in two separate lineages, lineages 1 and 2. A third lineage was initiated with a molecular clone, and again, susceptible and partially resistant phenotypes were observed. Three isolates were fully sequenced (from lineage 1), and 21 nucleotide changes were observed, with six amino acid changes. We speculate that the marmoset partially resistant phenotype may be due to a polymorphism in the marmoset population that affects critical virus-host interactions and that wild-type GBV-B is capable of rapidly adapting to this altered host.


mBio ◽  
2021 ◽  
Author(s):  
Lifeng Zhu ◽  
Qinnan Yang ◽  
Mallory J. Suhr Van Haute ◽  
Car Reen Kok ◽  
Joao Carlos Gomes-Neto ◽  
...  

Bifidobacterium species are recognized as important, beneficial microbes in the human gut microbiome, and their ability colonize individuals at different stages of life is influenced by poorly understood interactions between host, dietary, environmental, and ecological factors. The common marmoset is an emerging nonhuman primate model with a short maturation period, making this model amenable to study of the microbiome throughout a life history.


Sign in / Sign up

Export Citation Format

Share Document