Clinical significance of intercellular contact at the four-cell stage of human embryos, and the use of abnormal cleavage patterns to identify embryos with low implantation potential: a time-lapse study

2015 ◽  
Vol 103 (6) ◽  
pp. 1485-1491.e1 ◽  
Author(s):  
Yanhe Liu ◽  
Vincent Chapple ◽  
Katie Feenan ◽  
Peter Roberts ◽  
Phillip Matson
2016 ◽  
pp. 823-832 ◽  
Author(s):  
P. DRÁBKOVÁ ◽  
L. ANDRLOVÁ ◽  
R. HAMPL ◽  
R. KANĎÁR

The aim of this study was to find some relationship between amino acid metabolism and the embryo morphokinetic parameters studied via time-lapse analysis. Study included 48 human embryo samples and their culture media. Two groups of embryos were identified: embryos reached the 8-cell stage on day 3 (n=34) and embryos failed to develop at any point during the incubation (n=14). Amino acids levels were measured on day 3 of embryo development; using time-lapse analysis, the precise timing of embryo cleavage, synchrony of division, grade of fragmentation etc. were established. No statistically significant differences between dividing and arresting embryos were observed in terms of amino acids production/consumption and turnover. Amino acids which were part of the culture medium did not exhibit any statistically significant correlation with kinetic parameters with the exception of the grade of fragmentation on day 3; there were negative correlation with glutamate, and positive with glutamine, glycine and taurine. In some dividing and in some arresting embryos appeared new amino acids which strongly correlated with each other, with methionine, but not with any other amino acid that is a regular part of the culture medium.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242377
Author(s):  
Shabana Sayed ◽  
Marte Myhre Reigstad ◽  
Bjørn Molt Petersen ◽  
Arne Schwennicke ◽  
Jon Wegner Hausken ◽  
...  

The purpose of this retrospective time-lapse data analysis from transferred preimplantation human embryos was to identify early morphokinetic cleavage variables that are related to implantation and live birth following in vitro fertilization (IVF). All embryos were monitored from fertilization check until embryo transfer for a minimum of 44 hours. The study was designed to assess the association between day 2 embryo morphokinetic variables with implantation and live birth based on Known Implantation Data (KID). The kinetic variables were subjected to quartile-based analysis. The predictive ability for implantation and live birth was studied using receiver operator characteristic (ROC) curves. Three morphokinetic variables, time to 2-cells (t2), duration of second cell cycle (cc2) below one threshold and cc2 above another threshold had the highest predictive value with regards to implantation and live birth following IVF treatment. The predictive pre-transfer information has little divergence between fetal heartbeat and live birth data and therefore, at least for early morphokinetic variables up to the four-cell stage (t4), conclusions and models based on fetal heartbeat data can be expected to be valid for live birth datasets as well. The three above mentioned variables (t2, cc2 below one threshold and cc2 above another threshold) may supplement morphological evaluation in embryo selection and thereby improve the outcome of in vitro fertilization treatments.


2020 ◽  
Author(s):  
Meng Zhu ◽  
Marta N. Shahbazi ◽  
Angel Martin ◽  
Chuanxin Zhang ◽  
Berna Sozen ◽  
...  

AbstractThe formation of differential cell lineages in the mammalian blastocyst from the totipotent zygote is crucial for implantation and the success of the whole pregnancy. The first lineage segregation generates the polarised trophectoderm (TE) tissue, which forms the placenta, and the apolar inner cell mass (ICM), which mainly gives rise to all foetal tissues and also the yolk sac1–3. The mechanism underlying this cell fate segregation has been extensively studied in the mouse embryo4,5. However, when and how it takes place in the human embryo remains unclear. Here, using time-lapse imaging and 325 surplus human embryos, we provide a detailed characterisation of morphological events and transcription factor expression and localisation to understand how they lead to the first lineage segregation in human embryogenesis. We show that the first lineage segregation of the human embryo is triggered by cell polarisation that occurs at the 8-cell stage in two sequential steps. In the first step, F-actin becomes apically polarised concomitantly with embryo compaction. In the second step, the Par complex becomes polarised to form the apical cellular domain. Mechanistically, we show that activation of Phospholipase C (PLC) triggers actin polarisation and is therefore essential for apical domain formation, as is the case in mouse embryos6. Finally, we show that, in contrast to the mouse embryo, the key extra-embryonic determinant GATA37,8 is expressed not only in extra-embryonic lineage precursors upon blastocyst formation. However, the cell polarity machinery enhances the expression and nuclear accumulation of GATA3. In summary, our results demonstrate for the first time that cell polarisation reinforces the first lineage segregation in the human embryo.


Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 88-96
Author(s):  
Yu. K. Doronin ◽  
I. V. Senechkin ◽  
L. V. Hilkevich ◽  
M. A. Kurcer

In order to estimate the diversity of embryo cleavage relatives to embryo progress (blastocyst formation), time-lapse imaging data of preimplantation human embryo development were used. This retrospective study is focused on the topographic features and time parameters of the cleavages, with particular emphasis on the lengths of cleavage cycles and the genealogy of blastomeres in 2- to 8-cell human embryos. We have found that all 4-cell human embryos have four developmental variants that are based on the sequence of appearance and orientation of cleavage planes during embryo cleavage from 2 to 4 blastomeres. Each variant of cleavage shows a strong correlation with further developmental dynamics of the embryos (different cleavage cycle characteristics as well as lengths of blastomere cycles). An analysis of the sequence of human blastomere divisions allowed us to postulate that the effects of zygotic determinants are eliminated as a result of cleavage, and that, thereafter, blastomeres acquire the ability of own syntheses, regulation, polarization, formation of functional contacts, and, finally, of specific differentiation. This data on the early development of human embryos obtained using noninvasive methods complements and extend our understanding of the embryogenesis of eutherian mammals and may be applied in the practice of reproductive technologies.


PLoS ONE ◽  
2010 ◽  
Vol 5 (10) ◽  
pp. e13615 ◽  
Author(s):  
Amparo Galán ◽  
David Montaner ◽  
M. Eugenia Póo ◽  
Diana Valbuena ◽  
Verónica Ruiz ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M Sugishima ◽  
K Yumoto ◽  
T Shimura ◽  
Y Mio

Abstract Study question Is it possible to culture ZP-free embryos to eliminate perivitelline threads, which are known to be involved in generating cytoplasmic fragments at the first cleavage? Summary answer ZP-free culturing, an innovative system that decreases the amount of cytoplasmic fragments without disrupting the blastomeres, using incubators with time-lapse imaging. What is known already A study in 2017 observed perivitelline threads in more than 50% of cleavage-stage human embryos using time-lapse imaging, and the rate of cytoplasmic fragmentation (at the first cleavage) was significantly decreased in embryos without perivitelline threads (P < 0.001). While it has been proposed that perivitelline threads play an important role in crosslinking the cumulus cells and oocyte during maturation, the mechanism underlying such a role remains unclear. It is also unknown whether the threads still function in mature MII oocytes. Study design, size, duration A prospective study was conducted using 2,852 normal (2PN/2PB) embryos from c-IVF/ICSI and 113 abnormal (3PN) embryos obtained from c-IVF between 2017 and 2019. The zona pellucida (ZP) of 71 abnormal embryos was removed at the pronuclear stage (“ZP-free”), and the rest (n = 42) were cultured as “ZP-intact”. Normal and abnormal embryos were cultured for five days in bench-top incubators (MINC, COOK) and an incubator equipped with a time-lapse imaging system. Participants/materials, setting, methods Embryos used in this study were donated by 412 couples who underwent c-IVF cycles in our clinic between 2017 and 2019. For ZP removal, 3PN embryos were placed in 0.125M sucrose-containing HEPES media drops to reduce the ooplasm size. Then, ooplasms were completely separated from ZPs by a laser and pipetting. Embryo development and morphology of the three groups (normal, ZP-intact and ZP-free abnormal) were compared based on the degree of cytoplasmic fragmentation. Main results and the role of chance The first cleavage occurred in 97.8% (n = 2,790/2,852) of 2PN/2PB, 83.3% (n = 35/42) of ZP-intact 3PN and 97.2% (n = 69/71) of ZP-free 3PN. Normal (2PN/2PB), ZP-intact and ZP-free 3PN embryos were classified into three groups based on the modified Veeck’s criteria thus: <20% fragmented compared to the total volume of cytoplasm at the first cleavage (Grade 1 and 2, Good); 20–39% fragmented (Grade 3, Fair) and ≧40% fragmented (Grade 4, Poor). Of 69 cleaved ZP-free 3PN embryos, 68.1% (n = 47) showed less than 20% fragments which was significantly higher than 2PN/2PB (43.7%, n = 1,218/2,790) and ZP-intact 3PN (45.7%, n = 16/35; P < 0.05). Furthermore, 24.6% (n = 17/69) of ZP-free 3PN embryos showed 20–39% fragments which was significantly lower than 2PN/2PB (45.9%, n = 1,281/2,790; P < 0.05). In addition, 50.7% of ZP-free 3PN embryos (n = 36) developed to the morula stage after the third cleavage, and 29.6% (n = 21) formed blastocoel and became blastocysts. Thus, removing the ZP before the first cleavage did not adversely affect embryo development and decreased the cytoplasmic fragmentation. Limitations, reasons for caution Due to ethical and clinical limitations, we only examined abnormally fertilized embryos in this study. Moreover, since the relationship between the perivitelline threads and cytoplasmic fragments is unclear, we plan to conduct molecular biological analysis of the perivitelline threads in further studies. Wider implications of the findings: This study revealed that ZP is not always necessary after the pronuclear stage because ZP-free embryos studied herein developed normally and maintained cell adhesion well. This innovative culture method might provide the breakthrough needed for patients to improve embryo quality who obtain embryos with severe fragmentation caused by perivitelline threads. Trial registration number Not applicable


2019 ◽  
Vol 34 (8) ◽  
pp. 1439-1449 ◽  
Author(s):  
J Barberet ◽  
C Bruno ◽  
E Valot ◽  
C Antunes-Nunes ◽  
L Jonval ◽  
...  

AbstractSTUDY QUESTIONCan time-lapse imaging systems make it possible to identify novel early non-invasive biomarkers to predict live birth?SUMMARY ANSWERFrom mostly high-grade embryos, out of 35 morphometric, morphologic and morphokinetic variables, only pronuclei (PN) position at time of PN juxtaposition and the absence of multinucleated blastomeres at the 2-cell stage (MNB2cell), were potentially associated with live birth.WHAT IS KNOWN ALREADYPrevious studies indicate that some kinetic markers may be predictive of blastocyst development and embryonic implantation. Certain teams have suggested including some of them in decisional algorithms for embryo transfers.STUDY DESIGN, SIZE, DURATIONUsing a time-lapse incubator (EmbryoScope, Unisense FertiliTech), we retrospectively explored the associations between the morphometric, morphologic and morphokinetic parameters of oocytes, zygotes and embryos, and their associations with live birth. This study assessed 232 embryos from single embryo transfers after ICSI cycles performed between January 2014 and December 2017.PARTICIPANTS/MATERIALS, SETTING, METHODSThe morphometric, morphologic and morphokinetic parameters (18, 4 and 13, respectively) of oocytes, zygotes and early embryos were studied retrospectively. The associations between these parameters were examined using a Spearman’s correlation, Mann–Whitney or chi-squared test as appropriate. We examined whether these parameters were associated with outcomes in univariate and multivariate logistic regression analyses.MAIN RESULTS AND THE ROLE OF CHANCECentral PN juxtaposition was associated with a 2-fold increase in the odds of live birth (OR = 2.20; 95% CI, [1.26–3.89]; P = 0.006), while the presence of MNB2cell was associated with half the odds of live birth (OR = 0.51; 95% CI, [0.27–0.95]; P = 0.035). These two parameters were independent of embryo kinetics. The 33 remaining parameters had no significant association with the capacity of transferred embryos to develop to term.LIMITATIONS, REASONS FOR CAUTIONEven though the population size was relatively small, our analyses were based on homogeneous cycles, i.e. young women whose transferred embryos were found to be high-grade according to conventional morphology evaluation. In addition, our conclusions were established from a specific, highly selected population, so other study populations, such as women in an older age bracket, may yield different results. Finally, because we assessed day 2/3 transfers, our findings cannot be generalized to embryos cultured up to the blastocyst stage.WIDER IMPLICATIONS OF THE FINDINGSIt would be interesting to explore, prospectively, whether PN localisation is a relevant measure to predict embryo development when added into further algorithms and whether this parameter could be suitable for use in other IVF clinics. Further studies are needed, notably to explore the added value of timing evaluation in cohorts of embryos with low or intermediate morphology grade, as well as in other maternal populations (i.e. older women).STUDY FUNDING/COMPETING INTEREST(S)No external funding was used for this study. P. Sagot received funding from the following commercial companies: Merck Serono, Finox Biotech, Ferring, MSD France SAS, Teva Sante ́ SAS, Allergan France, Gedeon Richter France, Effik S.A., Karl Storz Endoscopie France, GE Medical Systems SCS, Laboratoires Genevrier, H.A.C. Pharma and Ipsen.All the authors confirm that none of this funding was used to support the research in this study. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the journal policies on sharing data and materials.


2019 ◽  
Vol 31 (12) ◽  
pp. 1862 ◽  
Author(s):  
N. A. Martino ◽  
G. Marzano ◽  
A. Mastrorocco ◽  
G. M. Lacalandra ◽  
L. Vincenti ◽  
...  

Time-lapse imaging was used to establish the morphokinetics of equine embryo development to the blastocyst stage after invitro oocyte maturation (IVM), intracytoplasmic sperm injection (ICSI) and embryo culture, in oocytes held overnight at room temperature (22–27°C; standard conditions) before IVM. Embryos that developed to the blastocyst stage underwent precleavage cytoplasmic extrusion and cleavage to the 2-, 3- and 4-cell stages significantly earlier than did embryos that arrested in development. We then determined the rate of blastocyst formation after ICSI in oocytes held for 2 days at either 15°C or room temperature before IVM (15-2d and RT-2d treatment groups respectively). The blastocyst development rate was significantly higher in the 15-2d than in the RT-2d group (13% vs 0% respectively). The failure of blastocyst development in the RT-2d group precluded comparison of morphokinetics of blastocyst development between treatments. In any condition examined, development to the blastocyst stage was characterised by earlier cytoplasmic extrusion before cleavage, earlier cleavage to 2- and 4-cell stages and reduced duration at the 2-cell stage compared with non-competent embryos. In conclusion, this study presents morphokinetic parameters predictive of embryo development invitro to the blastocyst stage after ICSI in the horse. We conclude that time-lapse imaging allows increased precision for evaluating effects of different treatments on equine embryo development.


Sign in / Sign up

Export Citation Format

Share Document