scholarly journals Phase equilibrium for surfactant Ls-54 in liquid CO2 with water and solubility estimation using the Peng–Robinson equation of state

2010 ◽  
Vol 298 (2) ◽  
pp. 212-218 ◽  
Author(s):  
Pedro J. Tarafa ◽  
Michael A. Matthews
1981 ◽  
Vol 21 (05) ◽  
pp. 535-550 ◽  
Author(s):  
S.T. Lee ◽  
R.H. Jacoby ◽  
W.H. Chen ◽  
W.E. Culham

Abstract Experimental phase equilibrium data are presented for three reservoir oils at conditions approximating those encountered in in-situ thermal recovery processes. The fluid systems involved consist of three major groups of components: flue gas, water, and crude oil. Data were measured at temperatures from 204.4 to 371.1°C (400 to 700°F) and pressures from 6996.0 to 20785.6 kPa (1,000 to 3,000 psia). Experimental phase equilibrium data were used to develop a correlation of binary interaction coefficients of crude-oil fractions required for the Peng-Robinson equation of state. Phase equilibrium data predicted using the Peng-Robinson equation of state, using our interaction coefficients, are compared with experimental data. Generally, the Peng-Robinson equation of state predictions were in close agreement with the experimental data. Effect of feed gas/oil ratio and water/oil ratio on the equilibrium coefficients was examined through the Peng-Robinson equation of state. A study on the feasibility of representing the crude oil by only two fractions was made also. This study includes a procedure for lumping the crude-oil fractions and examples showing the importance of mixing rules in determining the pseudo critical properties of lumped fractions. Introduction The steady growth of commercial thermal recovery processes1 has created a need for basic data on phase equilibria that involve water and hydrocarbons ranging from methane to high boiling-point fractions. The in-situ thermal recovery processes often are operated at pressures above 6800 kPa (1,000 psia) and temperatures above 200°C (400°F). Experimental data and theoretical correlations on phase equilibria approximating these systems are virtually nonexistent. Early work by White and Brown2 dealt with high boiling-point hydrocarbon phase equilibria. However, the highest pressure studied was 6894.8 kPa (1,000 psia) and the lightest component was pentane. Poettmann and Mayland,3 on the basis of an empirical correlation,4 constructed charts of equilibrium coefficients, or K values, as functions of pressure and temperature for various boiling-point fractions. But the maximum pressure studied was 6894.8 kPa (1,000 psia). Later, Hoffmann et al.5 studied phase behavior of a gas-condensate system with the highest pressure reaching 20 684.3 kPa (3,000 psia) but the highest temperature investigated was only 94.2°C (201°F). In 1963, Grayson and Streed6 reported experimental vapor/liquid equilibrium data for high-temperature and high-pressure hydrocarbon systems. They also extended the Chao-Seader correlation to cover the higher temperature ranges. However, the. major light component in Grayson and Streed's system was hydrogen. Recently, because of the increasing activity in carbon dioxide flooding processes, the phase equilibria of systems involving carbon dioxide and crude oil has received attention. Simon et al.7 studied phase behavior and other properties of carbon-dioxide/reservoir-oil systems. Shelton and Yarborough8 examined phase behavior in porous media during carbon dioxide or rich-gas flooding. No extensive data on equilibrium coefficients were reported in those papers, and the temperature ranges (out of physical reality) were below 93.5°C (200°F). None of these papers surveyed included water as a component.


2014 ◽  
Vol 362 ◽  
pp. 335-341 ◽  
Author(s):  
Leonardo Travalloni ◽  
Marcelo Castier ◽  
Frederico W. Tavares

2018 ◽  
Author(s):  
Xiaona Cui ◽  
Erlong Yang ◽  
Kaoping Song ◽  
Jingwei Huang ◽  
John Killough ◽  
...  

Author(s):  
V.L. Malyshev ◽  
◽  
E.F. Moiseeva ◽  

The paper presents a detailed algorithm for calculating the vapor-liquid phase equilibrium for multicomponent systems based on the Peng-Robinson equation of state. Various approaches are considered that make it possible to improve the quality of predicting phase equilibrium by the example of eight binary helium systems containing nitrogen, argon, carbon dioxide, methane, ethane, propane, isobutane, and n-butane. The influence of the acentric factor and the binary interaction parameter on the accuracy of the helium systems phase behavior predicting is analyzed. The optimal interaction coefficients for the presented systems are found under the assumption that this parameter does not depend on temperature. The temperature range of applicability of various approaches is determined, which makes it possible to maximize the description of the phase behavior of helium systems.


Fuel ◽  
2021 ◽  
Vol 293 ◽  
pp. 120254
Author(s):  
Gutierri Salgueiro ◽  
Marcellus de Moraes ◽  
Fernando Pessoa ◽  
Raquel Cavalcante ◽  
André Young

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ilyas Al-Kindi ◽  
Tayfun Babadagli

AbstractThe thermodynamics of fluids in confined (capillary) media is different from the bulk conditions due to the effects of the surface tension, wettability, and pore radius as described by the classical Kelvin equation. This study provides experimental data showing the deviation of propane vapour pressures in capillary media from the bulk conditions. Comparisons were also made with the vapour pressures calculated by the Peng–Robinson equation-of-state (PR-EOS). While the propane vapour pressures measured using synthetic capillary medium models (Hele–Shaw cells and microfluidic chips) were comparable with those measured at bulk conditions, the measured vapour pressures in the rock samples (sandstone, limestone, tight sandstone, and shale) were 15% (on average) less than those modelled by PR-EOS.


Sign in / Sign up

Export Citation Format

Share Document