Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles

2015 ◽  
Vol 188 ◽  
pp. 24-29 ◽  
Author(s):  
Yufang Wang ◽  
Xiaoyong Wang
2021 ◽  
Author(s):  
Aritra Sinha

Abstract This study focuses on the development and characterization of a novel biodegradable edible film made from soy protein isolate enriched with alginate-glycyrrhizin nanogel(GL-ALG NGP). Nanoparticles of particle sizes below 100 nm were synthesized using glycyrrhizin(GL), calcium chloride and, sodium alginate(SA) through the reverse micro-emulsion/internal gelation method. Soy protein isolate (SPI) based films were prepared by a simple casting procedure by incorporating GL-ALG NGPs in SPI solution in different ratios of (SPI: GL-ALG NGPs) 5:0, 5:1, 2:1, 1:1, and 1:1.5. Glycerol was used as a plasticizer in the film-forming solution. The effects of the proportions of GL-ALG NGPs addition on the thickness, mechanical properties, water vapor permeability, UV barrier performance, antioxidant activity, and antimicrobial property of the obtained films were studied. The GL-ALG NGPs were analyzed using Dynamic Light Scattering. Microstructural studies of obtained films were performed using Scanning Electron microscopy. Results show incorporation of GL-ALG NGPs in soy protein-alginate complex produced smoother, compact, and more continuous matrices as compared to pure SPI films. The test results indicated that blending of SPI with GL-ALG NGPs in the ratio 1:1 increased tensile strength of obtained films by 185%, reduced water solubility to 23.59%, and water vapor permeability to 0.3087 g-mm/m2-d-kPa. Obtained films exhibited good UV barrier performance, antioxidant activity and inhibited the growth of E. coli, S. aureus, Enterobacter sakazakii, and A. niger. So, soy protein isolate-based films enriched with GL-ALG NGPs are active biodegradable edible films that can be used to extend the shelf life of food products.


2020 ◽  
Vol 57 (10) ◽  
pp. 3591-3600
Author(s):  
Anwika Utami Putri Djuardi ◽  
Nancy Dewi Yuliana ◽  
Masahiro Ogawa ◽  
Takashi Akazawa ◽  
Maggy Thenawidjaja Suhartono

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


Sign in / Sign up

Export Citation Format

Share Document