Production of probiotic kefir fortified with encapsulated structured lipids and investigation of matrix effects by means of oxidation and in vitro digestion studies

2019 ◽  
Vol 296 ◽  
pp. 17-22 ◽  
Author(s):  
Alev Yüksel-Bilsel ◽  
Neşe Şahin-Yeşilçubuk
2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Bryan Gannon ◽  
Raymond Glahn ◽  
Saurabh Mehta

Abstract Objectives A multiple biofortified food crop trial targeting iron, zinc, and vitamin A deficiencies among young children and their breastfeeding mothers is planned in India. We sought to determine iron bioavailability from biofortified and conventional crop mixes representative of planned meal components. Methods A 24-meal menu was developed based on pearl millet, sweet potato, and lentils targeted for a feeding trial. Crops were procured from India, cooked, and freeze-dried before two rounds of an established in vitro digestion/Caco-2 iron bioavailability assay. Samples used a fixed weight adjusted for sweet potato water content. Representative crop proportions were determined using k-means clustering, combined such that samples included either all biofortified or all control crop varieties, and analyzed in triplicate. Outcomes were Caco-2 iron uptake and uptake normalized to iron per sample for fractional bioavailability. Data were analyzed with generalized linear models in SAS accounting for crop proportions and variety. Results Across both experiments, biofortified pearl millet alone demonstrated higher iron uptake than conventional varieties (5.01 ± 1.66 vs. 2.17 ± 0.96 ng ferritin/mg protein, P ≤ 0.036). Addition of sweet potato to pearl millet did not change iron uptake for biofortified varieties (P ≥0.13), but increased control iron uptake for all amounts of sweet potato (P ≤ 0.006), which did not differ from biofortified varieties (P ≥ 0.08). Lentil proportion increased iron uptake (β = 4.6 ± 2.2, P = 0.009), with no effect of variety or a lentil by variety interaction (P ≥ 0.56). The overall effect estimate of biofortified vs. control was (β = 1.79 ± 0.91, P = 0.08). Iron uptake normalized to iron per sample was higher for control crops (P ≤ 0.02), and enhanced by sweet potato, while inhibited by pearl millet (both P < 0.001). Conclusions A Caco-2 assay predicts that biofortified pearl millet alone has greater iron bioavailability than control pearl millet. The addition of sweet potato and lentils increased overall and relative iron bioavailability, while reducing differences between biofortified and control varieties. Matrix effects, processing, and promoters/inhibitors of iron absorption should be considered in addition to total iron concentration when optimizing iron bioavailability. Funding Sources This work was supported by HarvestPlus and the USDA. Supporting Tables, Images and/or Graphs


2021 ◽  
Vol 5 (9) ◽  
Author(s):  
Bryan M Gannon ◽  
Raymond P Glahn ◽  
Saurabh Mehta

ABSTRACT Background Inadequate nutritional status contributes to substantial losses in human health and productivity globally. A multiple biofortified food crop trial targeting iron, zinc, and vitamin A deficiencies among young children and their breastfeeding mothers is being conducted in India. Objective We sought to determine the relative iron bioavailability from biofortified and conventional crops and crop combinations representative of a cyclical menu using crops targeted for inclusion in the feeding trial. Methods Crops were procured from India, cooked, freeze-dried, and analyzed with an established in vitro digestion/Caco-2 iron bioavailability assay using a fixed sample weight. Crop proportions representative of meals planned for the human study were determined and combined such that samples included either all biofortified or all control crops. Crops were analyzed as single crops (n = 4) or crop combinations (n = 7) by variety (biofortified or control) in triplicate. The primary outcome was iron uptake measured by Caco-2 ferritin production normalized to total Caco-2 protein (nanograms of ferritin/milligrams of cell protein) analyzed for effects of crop variety and crop proportion using generalized linear models. Results Biofortified pearl millet alone demonstrated higher iron uptake than conventional varieties (5.01 ± 1.66 vs. 2.17 ± 0.96; P = 0.036). Addition of sweet potato or sweet potato + pulse improved iron uptake for all proportions tested in control varieties and select proportions for biofortified varieties (P ≤ 0.05). Two multiple crop combinations demonstrated modestly higher iron uptake from biofortified crops. Conclusions Optimizing total iron delivery should consider matrix effects, processing, and promoters/inhibitors of iron absorption in addition to total iron concentration. Future directions include evaluating recipes as prepared for consumption and comparison against human iron bioavailability studies.


2011 ◽  
Vol 59 (15) ◽  
pp. 8442-8449 ◽  
Author(s):  
Zhiping Shen ◽  
Christina Apriani ◽  
Rangika Weerakkody ◽  
Luz Sanguansri ◽  
Mary Ann Augustin

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Podsędek ◽  
Małgorzata Redzynia ◽  
Elżbieta Klewicka ◽  
Maria Koziołkiewicz

Red cabbage is, among different vegetables, one of the major sources of anthocyanins. In the present study an in vitro digestion method has been used to assay the influence of the physiological conditions in the stomach and small intestine, as well as faecal microflora on anthocyanins stability in red cabbage and anthocyanin-rich extract. The recovery of anthocyanins during in vitro gastrointestinal digestion was strongly influenced by food matrix. The results showed that other constituents present in cabbage enhanced the stability of anthocyanins during the digestion. The amount of anthocyanins (HPLC method) and antioxidant capacity (ABTS and FRAP assays) strongly decreased after pancreatic-bile digestion in both matrices but total phenolics content (Folin-Ciocalteu assay) in these digestions was higher than in initial samples. Incubation with human faecal microflora caused further decline in anthocyanins content. The results obtained suggest that intact anthocyanins in gastric and products of their decomposition in small and large intestine may be mainly responsible for the antioxidant activity and other physiological effects after consumption of red cabbage.


2020 ◽  
Vol 328 ◽  
pp. 127126 ◽  
Author(s):  
Stefano Nebbia ◽  
Marzia Giribaldi ◽  
Laura Cavallarin ◽  
Enrico Bertino ◽  
Alessandra Coscia ◽  
...  

2019 ◽  
Vol 141 ◽  
pp. 240-246 ◽  
Author(s):  
Hui Zhang ◽  
Zhi Li ◽  
Yanjun Tian ◽  
Zibo Song ◽  
Lianzhong Ai

Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


2021 ◽  
Vol 140 ◽  
pp. 110054
Author(s):  
Pablo Gallego-Lobillo ◽  
Alvaro Ferreira-Lazarte ◽  
Oswaldo Hernández-Hernández ◽  
Mar Villamiel

Sign in / Sign up

Export Citation Format

Share Document