Metabolome classification via GC/MS and UHPLC/MS of olive fruit varieties grown in Egypt reveal pickling process impact on their composition

2021 ◽  
Vol 339 ◽  
pp. 127861 ◽  
Author(s):  
Nesrin M. Fayek ◽  
Mohamed A. Farag ◽  
Fatema R. Saber
Keyword(s):  
Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2275
Author(s):  
Arafat Toghan ◽  
Mohamed Gouda ◽  
Kamal Shalabi ◽  
Hany M. Abd El-Lateef

Converting low-cost bio-plant residuals into high-value reusable nanomaterials such as microcrystalline cellulose is an important technological and environmental challenge. In this report, nanocrystalline cellulose (NCC) was prepared by acid hydrolysis of macrocrystalline cellulose (CEL). The newly synthesized nanomaterials were fully characterized using spectroscopic and microscopic techniques including FE-SEM, FT-IR, TEM, Raman spectroscopy, and BET surface area. Morphological portrayal showed the rod-shaped structure for NCC with an average diameter of 10–25 nm in thickness as well as length 100–200 nm. The BET surface area of pure CEL and NCC was found to be 10.41 and 27 m2/g, respectively. The comparative protection capacity of natural polymers CEL and NCC towards improving the SS316 alloy corrosion resistance has been assessed during the acid pickling process by electrochemical (OCP, PDP, and EIS), and weight loss (WL) measurements. The outcomes attained from the various empirical methods were matched and exhibited that the protective efficacy of these polymers augmented with the upsurge in dose in this order CEL (93.1%) < NCC (96.3%). The examined polymers display mixed-corrosion inhibition type features by hindering the active centers on the metal interface, and their adsorption followed the Langmuir isotherm model. Surface morphology analyses by SEM reinforced the adsorption of polymers on the metal substrate. The Density Functional Theory (DFT) parameters were intended and exhibited the anti-corrosive characteristics of CEL and NCC polymers. A Monte Carlo (MC) simulation study revealed that CEL and NCC polymers are resolutely adsorbed on the SS316 alloy surface and forming a powerful adsorbed protective layer.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1480
Author(s):  
Renata Biškauskaitė ◽  
Violeta Valeikienė ◽  
Virgilijus Valeika

Recently, increasing attention has been paid to the application of enzymes in a wide variety of leather production processes. The aim of the present study was to investigate the action of enzymatic pickling on derma’s collagen and the influence of this action on subsequent processes and properties of chromed and finished leather. The application of active in acidic medium proteolytic enzymes in the pickling process led to an additional impact on derma structure: collagen was more strongly affected and the porosity of the pelt dermis was reduced, but the hide became more thermally stable. The enzymatically pickled pelt bonded more chromium and reached higher shrinkage temperature while chroming; dyes penetrated deeper; such leather bonded more fatliquors. On the other hand, the action of enzymes worsened the physical–mechanical properties of the leather, as the experimental leather was weaker than the conventional one. The first was characterised by weaker grain layer and had significantly higher relative elongation. Therefore, as some properties improve and others worsen during such a process, the application of every enzyme should be carefully investigated and optimized to produce a leather with defined properties.


Sign in / Sign up

Export Citation Format

Share Document