Comparative study of the anti-obesity and gut microbiota modulation effects of green tea phenolics and their oxidation products in high-fat-induced obese mice

2021 ◽  
pp. 130735
Author(s):  
Zhibin Liu ◽  
Qin Chen ◽  
Chen Zhang ◽  
Li Ni
2016 ◽  
Vol 7 (12) ◽  
pp. 4869-4879 ◽  
Author(s):  
Zhibin Liu ◽  
Zhichao Chen ◽  
Hongwen Guo ◽  
Dongping He ◽  
Huiru Zhao ◽  
...  

Tea consumption has been identified to have a gut microbiota modulatory effect, which may be related to its anti-obesity effect.


2021 ◽  
Author(s):  
Haizhao Song ◽  
Xinchun Shen ◽  
Yang Zhou ◽  
Xiaodong Zheng

Supplementation of black rice anthocyanins (BRAN) alleviated high fat diet-induced obesity, insulin resistance and hepatic steatosis by improvement of lipid metabolism and modification of the gut microbiota.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4001
Author(s):  
Sen Guo ◽  
Haoan Zhao ◽  
Zhongxiao Ma ◽  
Shanshan Zhang ◽  
Mingrou Li ◽  
...  

Previously we conducted a phytochemical study on the seeds of Fraxinus excelsior and isolated nine secoiridoid compounds with adipocyte differentiation inhibitory activity and peroxisome proliferator activated receptor alpha (PPARα) activation effects. However, the bioactive constituents and functions of Fraxinus mandshurica seeds have not been studied. In the present study, we investigated the secoiridoid compounds in F. mandshurica seed extract (FM) using column chromatography, 1H-NMR, 13C-NMR and HPLC-DAD methods. The pancreatic lipase inhibitory activities of isolated compounds were evaluated in vitro. Additionally, the anti-obesity and gut microbiota modulation effect of FM on high-fat diet-induced obesity in C57BL/6 mice were also studied in vivo. The results showed that 19 secoiridoids were isolated from FM and identified. The total content of secoiridoids in FM reached 181.35 mg/g and the highest content was nuzhenide (88.21 mg/g). All these secoiridoid compounds exhibited good pancreatic lipase inhibitory activity with inhibition rate ranged from 33.77% to 70.25% at the concentration of 100 μM. After obese mice were administrated with FM at 400 mg/kg.bw for 8 weeks, body weight was decreased by 15.81%. Moreover, FM could attenuate the lipid accumulation in serum and liver, relieve the damage in liver and kidney, and extenuate oxidative stress injury and inflammation caused by obesity in mice. FM could also modulate the structural alteration of gut microbiota in obese mice, increasing the proportion of anti-obesity gut microbiota (Bacteroidetes, Bacteroidia, S24-7 and Allobaculum), and reducing the proportion of obesogenic gut microbiota (Firmicutes and Dorea). This study suggests that F. mandshurica seeds or their secoiridoids may have potential for use as a dietary supplement for obesity management.


2020 ◽  
Vol 10 ◽  
Author(s):  
Lívia Pimentel de Sant'Ana ◽  
Dalila Juliana S. Ribeiro ◽  
Aline Maria Araújo Martins ◽  
Fábio Neves dos Santos ◽  
Rafael Corrêa ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1848
Author(s):  
Jungman Kim ◽  
Jae Ho Choi ◽  
Taehwan Oh ◽  
Byungjae Ahn ◽  
Tatsuya Unno

Codium fragile (CF) is a functional seaweed food that has been used for its health effects, including immunostimulatory, anti-inflammatory, anti-obesity and anti-cancer activities, but the effect of CF extracts on obesity via regulation of intestinal microflora is still unknown. This study investigated anti-obesity effects of CF extracts on gut microbiota of diet-induced obese mice. C57BL/6 mice fed a high-fat (HF) diet were given CF extracts intragastrically for 12 weeks. CF extracts significantly decreased animal body weight and the size of adipocytes, while reducing serum levels of cholesterol and glucose. In addition, CF extracts significantly shifted the gut microbiota of mice by increasing the abundance of Bacteroidetes and decreasing the abundance of Verrucomicrobia species, in which the portion of beneficial bacteria (i.e., Ruminococcaceae, Lachnospiraceae and Acetatifactor) were increased. This resulted in shifting predicted intestinal metabolic pathways involved in regulating adipocytes (i.e., mevalonate metabolism), energy harvest (i.e., pyruvate fermentation and glycolysis), appetite (i.e., chorismate biosynthesis) and metabolic disorders (i.e., isoprene biosynthesis, urea metabolism, and peptidoglycan biosynthesis). In conclusion, our study showed that CF extracts ameliorate intestinal metabolism in HF-induced obese mice by modulating the gut microbiota.


2015 ◽  
Vol 18 (5) ◽  
pp. 549-556 ◽  
Author(s):  
Dae-Bang Seo ◽  
Hyun Woo Jeong ◽  
Donghyun Cho ◽  
Bum Jin Lee ◽  
Ji Hae Lee ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Cláudio A. Cunha ◽  
Fábio S. Lira ◽  
José C. Rosa Neto ◽  
Gustavo D. Pimentel ◽  
Gabriel I. H. Souza ◽  
...  

The aim of this study was to evaluate the effects of green teaCamellia sinensisextract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water); CG (chow diet and water + green tea extract); HW (high-fat diet and water); HG (high-fat diet and water + green tea extract). The mice were fedad libitumwith chow or high-fat diet and concomitantly supplemented (oral gavage) with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.). The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFαlevels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.


2012 ◽  
Vol 9 (1) ◽  
pp. 105 ◽  
Author(s):  
Ulrika Axling ◽  
Crister Olsson ◽  
Jie Xu ◽  
Céline Fernandez ◽  
Sara Larsson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document