scholarly journals Codium fragile Ameliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1848
Author(s):  
Jungman Kim ◽  
Jae Ho Choi ◽  
Taehwan Oh ◽  
Byungjae Ahn ◽  
Tatsuya Unno

Codium fragile (CF) is a functional seaweed food that has been used for its health effects, including immunostimulatory, anti-inflammatory, anti-obesity and anti-cancer activities, but the effect of CF extracts on obesity via regulation of intestinal microflora is still unknown. This study investigated anti-obesity effects of CF extracts on gut microbiota of diet-induced obese mice. C57BL/6 mice fed a high-fat (HF) diet were given CF extracts intragastrically for 12 weeks. CF extracts significantly decreased animal body weight and the size of adipocytes, while reducing serum levels of cholesterol and glucose. In addition, CF extracts significantly shifted the gut microbiota of mice by increasing the abundance of Bacteroidetes and decreasing the abundance of Verrucomicrobia species, in which the portion of beneficial bacteria (i.e., Ruminococcaceae, Lachnospiraceae and Acetatifactor) were increased. This resulted in shifting predicted intestinal metabolic pathways involved in regulating adipocytes (i.e., mevalonate metabolism), energy harvest (i.e., pyruvate fermentation and glycolysis), appetite (i.e., chorismate biosynthesis) and metabolic disorders (i.e., isoprene biosynthesis, urea metabolism, and peptidoglycan biosynthesis). In conclusion, our study showed that CF extracts ameliorate intestinal metabolism in HF-induced obese mice by modulating the gut microbiota.

2021 ◽  
Author(s):  
Haizhao Song ◽  
Xinchun Shen ◽  
Yang Zhou ◽  
Xiaodong Zheng

Supplementation of black rice anthocyanins (BRAN) alleviated high fat diet-induced obesity, insulin resistance and hepatic steatosis by improvement of lipid metabolism and modification of the gut microbiota.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4001
Author(s):  
Sen Guo ◽  
Haoan Zhao ◽  
Zhongxiao Ma ◽  
Shanshan Zhang ◽  
Mingrou Li ◽  
...  

Previously we conducted a phytochemical study on the seeds of Fraxinus excelsior and isolated nine secoiridoid compounds with adipocyte differentiation inhibitory activity and peroxisome proliferator activated receptor alpha (PPARα) activation effects. However, the bioactive constituents and functions of Fraxinus mandshurica seeds have not been studied. In the present study, we investigated the secoiridoid compounds in F. mandshurica seed extract (FM) using column chromatography, 1H-NMR, 13C-NMR and HPLC-DAD methods. The pancreatic lipase inhibitory activities of isolated compounds were evaluated in vitro. Additionally, the anti-obesity and gut microbiota modulation effect of FM on high-fat diet-induced obesity in C57BL/6 mice were also studied in vivo. The results showed that 19 secoiridoids were isolated from FM and identified. The total content of secoiridoids in FM reached 181.35 mg/g and the highest content was nuzhenide (88.21 mg/g). All these secoiridoid compounds exhibited good pancreatic lipase inhibitory activity with inhibition rate ranged from 33.77% to 70.25% at the concentration of 100 μM. After obese mice were administrated with FM at 400 mg/kg.bw for 8 weeks, body weight was decreased by 15.81%. Moreover, FM could attenuate the lipid accumulation in serum and liver, relieve the damage in liver and kidney, and extenuate oxidative stress injury and inflammation caused by obesity in mice. FM could also modulate the structural alteration of gut microbiota in obese mice, increasing the proportion of anti-obesity gut microbiota (Bacteroidetes, Bacteroidia, S24-7 and Allobaculum), and reducing the proportion of obesogenic gut microbiota (Firmicutes and Dorea). This study suggests that F. mandshurica seeds or their secoiridoids may have potential for use as a dietary supplement for obesity management.


2020 ◽  
Vol 10 ◽  
Author(s):  
Lívia Pimentel de Sant'Ana ◽  
Dalila Juliana S. Ribeiro ◽  
Aline Maria Araújo Martins ◽  
Fábio Neves dos Santos ◽  
Rafael Corrêa ◽  
...  

2016 ◽  
Vol 7 (12) ◽  
pp. 4869-4879 ◽  
Author(s):  
Zhibin Liu ◽  
Zhichao Chen ◽  
Hongwen Guo ◽  
Dongping He ◽  
Huiru Zhao ◽  
...  

Tea consumption has been identified to have a gut microbiota modulatory effect, which may be related to its anti-obesity effect.


2020 ◽  
Vol 11 (3) ◽  
pp. 2406-2417 ◽  
Author(s):  
Yucheng Zou ◽  
Xingrong Ju ◽  
Wenye Chen ◽  
Juan Yuan ◽  
Zhigao Wang ◽  
...  

Rice bran supplementation played a significant role in reducing dyslipidemia and inflammation, enhancing browning of white adipocytes and modulating gut microbiota for the prevention and control of obesity.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Hengjun Du ◽  
Xiaoqiong Cao ◽  
Yanhui Han ◽  
Min Gu ◽  
Hang Xiao

Abstract Objectives Many food products contain inorganic nanoparticles (NPs), such as titanium dioxide (TiO2) NPs. There is increasing concern about the potential unintended health risks associated with foodborne TiO2 NPs in certain populations, such as the obese. The purpose of this study was to determine the adverse effects of TiO2 NPs in obese individuals, the molecular mechanism involved and the potential role of gut microbiota in mediating the adverse effects. Methods Two types of TiO2 (30 nm and E171-Food grade TiO2) were mixed with mouse diet at 0.1 wt% and fed to two populations of mice (high-fat diet-fed obese mice and non-obese mice). Meanwhile, fecal samples from the above groups of mice were collected weekly for transplanting to four groups of mice fed a low-fat diet for 10 weeks. 16 s rRNA gene amplicon sequencing, histological analysis, immunohistochemistry, ELISA and SCFAs analysis were utilized to characterize the composition of the microbiota, inflammation status, and the effects of altered gut microbiota on the inflammation status of the mouse colon. Results TiO2 NPs significantly altered the composition of gut microbiota with stronger alterations in the high-fat diet-fed obese mice than the low-fat diet-fed non-obese mice. The abundance of inflammation-related cytokines (e.g., IL-10, IL-12p70, and IL-17) and myeloperoxidase (MPO) in the mouse colonic mucosa were significantly altered by TiO2 NPs to produce an inflammatory state. TiO2 NPs decreased the cecal levels of SCFAs such as butyrate. Moreover, the magnitude of the above alteration was higher in the obese mice than in the non-obese mice. After 10 weeks of microbial transplant, microbiota from the mice consuming a high-fat diet with TiO2 NPs led to an increase of pro-inflammatory cytokines, loss of healthy colonic morphology, and infiltration of immune cells in the colon of the low-fat diet-fed recipient mice, indicating a significant colonic inflammation. Conclusions TiO2 NPs altered gut microbiota in both obese and non-obese mice, with stronger effects in the obese mice, and the alteration of gut microbiota led to colonic inflammation in the mice. Overall, these findings provided a valuable new perspective on the potential adverse effects and appropriate mechanisms of foodborne TiO2 NPs among populations with different obese status. Funding Sources USDA/NIFA competitive grants to Hang Xiao.


Nutrients ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 204 ◽  
Author(s):  
Ran Okouchi ◽  
Shuang E ◽  
Kazushi Yamamoto ◽  
Toshikuni Ota ◽  
Kentarou Seki ◽  
...  

We determined whether the anti-obesity effect provided by the consumption of Euglena gracilis (Euglena), which is rich in insoluble dietary fiber, could be enhanced by the co-consumption of vegetables with an abundance of soluble dietary fiber. Nine-week-old male C57BL/6J mice were divided into five groups as follows: group 1 received a normal diet, group 2 received a high-fat diet, and groups 3, 4, and 5 received high fat diets containing 0.3% paramylon, 1.0% Euglena, or 1.0% Euglena plus 0.3% vegetables (barley leaf, kale, and ashitaba), respectively. Mice were fed ad libitum until 18 weeks of age. Euglena intake significantly reduced visceral fat accumulation in obese mice, and co-consumption of vegetables enhanced this effect. Consumption of Euglena with vegetables reduced adipocyte area, suppressed the expression of genes related to fatty acid synthesis, upregulated genes related to adipocyte lipolysis, and suppressed serum markers of inflammation. Notably, we also observed an increase in the fraction of short-chain fatty acid-producing beneficial bacteria, a reduction in harmful bacteria that cause inflammation, and an increase in short-chain fatty acid production. Therefore, the co-consumption of vegetables enhanced the anti-obesity and anti-inflammatory effects of Euglena, likely by modulating the gut microbiota composition.


Sign in / Sign up

Export Citation Format

Share Document