Reduction of Listeria monocytogenes contamination on produce – A quantitative analysis of common liquid fresh produce wash compounds

Food Control ◽  
2014 ◽  
Vol 46 ◽  
pp. 430-440 ◽  
Author(s):  
K. Hoelzer ◽  
R. Pouillot ◽  
J.M. Van Doren ◽  
S. Dennis
Food Research ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 259-265
Author(s):  
Y. Ali ◽  
H.Y. Mah ◽  
E.T. Phuah ◽  
S.N. Chen ◽  
S.K. Yeo ◽  
...  

Fresh produce can be contaminated at any stage along the food supply chain. In this study, apple was chosen to determine the time course of biofilm formation by Listeria monocytogenes (ATCC 19115), as well as to compare the efficacy of different household washing methods such as scrubbing with hands under running tap water, soaking with and without commercial vegetable wash with different treatment times in removing the biofilm formation by L. monocytogenes on apple surface. The biofilm formation was quantified using crystal violet assay and the result showed that L. monocytogenes took 18 hrs to form matured biofilm on apple surface. Besides, scrubbing apples with hands under running tap water for 30 s and 60 s were the most effective method which significantly removed (P<0.05) biofilm formed on the apple surface with approximately 5.93 log reduction. Soaking apples with vegetable wash for 5 mins and 10 mins were also found to be significantly effective (P<0.05) in reducing L. monocytogenes biofilm. Since L. monocytogenes can form matured biofilm on fresh produce, therefore efficient washing step is important before consuming fresh produce to lower the risk of foodborne illness.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. e00540-18 ◽  
Author(s):  
Callum J. Highmore ◽  
Jennifer C. Warner ◽  
Steve D. Rothwell ◽  
Sandra A. Wilks ◽  
C. William Keevil

ABSTRACTThe microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-taggedListeria monocytogenesandSalmonella entericaserovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viableL. monocytogenesandSalmonellaThompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNCL. monocytogenesandSalmonellaThompson was assessed by usingCaenorhabditis elegans. Ingestion of VBNC pathogens byC. elegansresulted in a significant life span reduction (P= 0.0064 andP< 0.0001), and no significant difference between the life span reductions caused by the VBNC and culturableL. monocytogenestreatments was observed.L. monocytogeneswas visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected.IMPORTANCEMany bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogensListeria monocytogenesandSalmonella enterica. It was also found that chlorine is ineffective at killing total populations of the pathogens. A life span reduction was observed inCaenorhabditis elegansthat ingested these VBNC pathogens, with VBNCL. monocytogenesas infectious as its culturable counterpart. These data show that VBNC food-borne pathogens can both be generated and avoid detection by industrial practices while potentially retaining the ability to cause disease.


2020 ◽  
Vol 83 (4) ◽  
pp. 637-643
Author(s):  
JOSHUA B. GURTLER

ABSTRACT Contamination of fresh produce with the foodborne pathogens Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 continues to be problematic, resulting in outbreaks of foodborne illness and costly corporate recalls. Various individual concentrations of citric or lactic acids (0.35 to 0.61%) or isopropyl citrate (0.16 to 0.54%) combined with two generally recognized as safe surfactants, 0.025% sodium-2-ethyl-hexyl sulfate and 0.025% sodium dodecylbenzene-sulfonate, were tested against these three pathogens in suspension and when inoculated and dried on the surface of grape tomatoes. The efficacy of sodium hypochlorite (NaClO; at 46 ppm) was also evaluated under dirty and clean conditions in suspension after addition of 0.3 or 0.03% bovine serum albumin, respectively, as an organic load. NaClO (46 ppm) inactivated the three pathogens in suspension by &lt;0.76 log CFU/mL after 5 min in the presence of 0.3% bovine serum albumin, whereas 9 and 15 ppm of free chlorine inactivated the pathogens by 0.64 and 2.77 log CFU/mL, respectively, after 5 min under clean conditions. Isopropyl citrate (0.16% acidulant) plus 0.05% total concentration of the two surfactants inactivated the pathogens in suspension by up to 7.0 log CFU/mL within 2 min. When applied to grape tomatoes for 2 min, 0.54% isopropyl citrate plus 0.025% concentrations of each of the two surfactants reduced Salmonella, E. coli O157:H7, and L. monocytogenes by as much as ca. 5.47, 4.89, and 4.19 log CFU/g, respectively. These reductions were significantly greater than those achieved with 49 ppm of free chlorine. Citric acid and lactic acid plus surfactant washes achieved greater inactivation than water-only washes, reducing Salmonella, E. coli O157:H7, and L. monocytogenes on tomatoes by up to 4.90, 4.37, and 3.98 log CFU/g, respectively. These results suggest that these combinations of acidulants and surfactants may be an effective tool for preventing cross-contamination during the washing of grape tomatoes, for reducing pathogens on the fruit itself, and as an alternative to chlorine for washing fresh produce. HIGHLIGHTS


2021 ◽  
Author(s):  
Qiong Huang

Food poisoning caused by microorganisms has caused widespread concern. Herein, a highly sensitive on-site screening test strip for the detection of different pathogenic microorganisms (Listeria monocytogenes and Staphylococcus aureus) was...


2015 ◽  
Vol 81 (23) ◽  
pp. 8008-8021 ◽  
Author(s):  
Leonardo Prado-Silva ◽  
Vasco Cadavez ◽  
Ursula Gonzales-Barron ◽  
Ana Carolina B. Rezende ◽  
Anderson S. Sant'Ana

ABSTRACTThe aim of this study was to perform a meta-analysis of the effects of sanitizing treatments of fresh produce onSalmonellaspp.,Escherichia coliO157:H7, andListeria monocytogenes. From 55 primary studies found to report on such effects, 40 were selected based on specific criteria, leading to more than 1,000 data on mean log reductions of these three bacterial pathogens impairing the safety of fresh produce. Data were partitioned to build three meta-analytical models that could allow the assessment of differences in mean log reductions among pathogens, fresh produce, and sanitizers. Moderating variables assessed in the meta-analytical models included type of fresh produce, type of sanitizer, concentration, and treatment time and temperature. Further, a proposal was done to classify the sanitizers according to bactericidal efficacy by means of a meta-analytical dendrogram. The results indicated that both time and temperature significantly affected the mean log reductions of the sanitizing treatment (P< 0.0001). In general, sanitizer treatments led to lower mean log reductions when applied to leafy greens (for example, 0.68 log reductions [0.00 to 1.37] achieved in lettuce) compared to other, nonleafy vegetables (for example, 3.04 mean log reductions [2.32 to 3.76] obtained for carrots). Among the pathogens,E. coliO157:H7 was more resistant to ozone (1.6 mean log reductions), whileL. monocytogenesandSalmonellapresented high resistance to organic acids, such as citric acid, acetic acid, and lactic acid (∼3.0 mean log reductions). With regard to the sanitizers, it has been found that slightly acidic electrolyzed water, acidified sodium chlorite, and the gaseous chlorine dioxide clustered together, indicating that they possessed the strongest bactericidal effect. The results reported seem to be an important achievement for advancing the global understanding of the effectiveness of sanitizers for microbial safety of fresh produce.


Sign in / Sign up

Export Citation Format

Share Document