Development and evaluation of a real-time fluorescence, and naked-eye colorimetric, loop-mediated isothermal amplification-based method for the rapid detection of spoilage fungi in fruit preparations

Food Control ◽  
2021 ◽  
pp. 108784
Author(s):  
Foteini Roumani ◽  
Saioa Gómez ◽  
Cristina Rodrigues ◽  
Jorge Barros-Velázquez ◽  
Alejandro Garrido-Maestu ◽  
...  
2005 ◽  
Vol 54 (11) ◽  
pp. 1037-1041 ◽  
Author(s):  
Ryoichi Saito ◽  
Yoshiki Misawa ◽  
Kyoji Moriya ◽  
Kazuhiko Koike ◽  
Kimiko Ubukata ◽  
...  

A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Mycoplasma pneumoniae was developed and evaluated. The assay specifically amplified only M. pneumoniae sequences, and no cross-reactivity was observed for other Mycoplasma species or respiratory bacterial species. The detection limit for this assay was found to be 2 × 102 copies, corresponding to 2–20 colour changing units of M. pneumoniae in 1 h, as observed in a real-time turbidimeter and electrophoretic analysis. The accuracy of the LAMP reaction was confirmed by restriction endonuclease analysis as well as direct sequencing of the amplified product. The assay was applied to 95 nasopharyngeal swab samples collected from patients or from healthy individuals, and compared to a real-time PCR assay in-house. A concordance of 100 % was observed between the two assays. The LAMP assay is easy to perform, shows a rapid reaction and is inexpensive. It may therefore be applied in the routine diagnosis of M. pneumoniae infection in the clinical laboratory.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Xu-Guang Guo ◽  
Ya-Ru Zhuang ◽  
Jin-Zhou Wen ◽  
Tian-Ao Xie ◽  
Ye-Ling Liu ◽  
...  

Abstract Streptococcus agalactiae is a major pathogenic bacterium causing perinatal infections in humans. In the present study, a novel real-time fluorescence loop-mediated isothermal amplification technology was successfully developed and evaluated for the detection of S. agalactiae in a single reaction. Six specific primers were designed to amplify the corresponding six regions of fbs B gene of S. agalactiae, using Bst DNA polymerase with DNA strand displacement activity at a constant temperature for 60 min. The presence of S. agalactiae was indicated by the fluorescence in real-time. Amplification of the targeted gene fragment was optimized with the primer 1 in the current setup. Positive result was only obtained for Sa by Real-LAMP among 10 tested relevant bacterial strains, with the detection sensitivity of 300 pg/µl. Real-LAMP was demonstrated to be a simple and rapid detection tool for S. agalactiae with high specificity and stability, which ensures its wide application and broad prospective utilization in clinical practice for the rapid detection of S. agalactiae.


Sign in / Sign up

Export Citation Format

Share Document