Effect of Persian gum and Xanthan gum on foaming properties and stability of pasteurized fresh egg white foam

2019 ◽  
Vol 87 ◽  
pp. 550-560 ◽  
Author(s):  
Mohsen Dabestani ◽  
Samira Yeganehzad
2011 ◽  
Vol 24 (No. 3) ◽  
pp. 110-118 ◽  
Author(s):  
K. Lomakina ◽  
K. Míková

Many foods are prepared using egg white, most of them being based on the foaming properties of egg white which are due to albumen proteins ability to encapsulate and retain air. Therefore, many scientists aim to find new methods to improve the volume and the stability of egg white foam. This paper is a review of various factors affecting the foaming ability of egg white.  


LWT ◽  
2018 ◽  
Vol 97 ◽  
pp. 151-156 ◽  
Author(s):  
Peishan Li ◽  
Zhuo Sun ◽  
Meihu Ma ◽  
Yongguo Jin ◽  
Long Sheng

1976 ◽  
Vol 55 (2) ◽  
pp. 738-743 ◽  
Author(s):  
F.E. Cunningham
Keyword(s):  

2013 ◽  
Vol 3 (1) ◽  
pp. 87 ◽  
Author(s):  
Quirino Dawa ◽  
Yufei Hua ◽  
Moses Vernonxious Madalitso Chamba ◽  
Kingsley George Masamba ◽  
Caimeng Zhang

<p>Understanding how foaming properties of proteins are affected by factors such as pH, salt concentration and temperature is essential in predicting their performance and utilisation. In this study, the effects of pH and salt concentration were studied on the foaming properties of pumpkin seed protein isolate (PSPI) and PSPI- xanthan (XG)/Arabic (GA) gum blends. The foaming properties of the PSPI-GA/XG blends were also compared with egg white. Foam stability (FS) was significantly affected by pH with PSPI: GA (25:4) and PSPI: XG (25:1) having a significantly higher stability at pH 2 with the lowest foam stability at pH 4. Sodium chloride (0.2-1.0 M) did not significantly affect foaming properties although PSPI: GA (25:4) had the highest FC (89.33 ± 3.24%) and FS (76.83 ± 1.53 min) at 0.2 M sodium chloride concentration. The foaming capacity (FC) of PSPI: GA (25:4) blend (128.00 ± 0.91%) was significantly higher (<em>p </em><em>&lt; </em>0<em>.</em>05) than that of egg white (74.00 ± 1.33%) but its FS was significantly lower. It was further revealed that the FC of egg white (74.00 ± 1.33%) was comparable to the PSPI:XG (25:1) blend (74.00 ± 1.46%) but the FS for egg white (480.00 ± 2.67 min) was significantly higher (<em>p </em><em>&lt; </em>0<em>.</em>05) than the FS (116.21 ± 0.86 min) of PSPI:XG (25:1). The foaming properties of PSPI and PSPI-xanthan (XG)/Arabic (GA) blends were significantly affected by pH. Optimum foaming properties, PSPI:XG (25:1) and PSPI:GA (25:4) were observed at pH 2 and heat treatment temperature of 80 ºC.</p>


LWT ◽  
2022 ◽  
Vol 153 ◽  
pp. 112505
Author(s):  
Lixian Ding ◽  
Minquan Xia ◽  
Qi Zeng ◽  
Qiannan Zhao ◽  
Zhaoxia Cai ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2238
Author(s):  
Xin Li ◽  
Yue-Meng Wang ◽  
Cheng-Feng Sun ◽  
Jian-Hao Lv ◽  
Yan-Jun Yang

As an excellent foaming agent, egg white protein (EWP) is always contaminated by egg yolk in the industrial processing, therefore, decreasing its foaming properties. The aim of this study was to simulate the industrial EWP (egg white protein with 0.5% w/w of egg yolk) and characterize their foaming and structural properties when hydrolyzed by two types of esterase (lipase and phospholipase A2). Results showed that egg yolk plasma might have been the main fraction, which led to the poor foaming properties of the contaminated egg white protein compared with egg yolk granules. After hydrolyzation, both foamability and foam stability of investigated systems thereof (egg white protein with egg yolk, egg white protein with egg yolk plasma, and egg white protein with egg yolk granules) increased significantly compared with unhydrolyzed ones. However, phospholipids A2 (PLP) seemed to be more effective on increasing their foaming properties as compared to those systems hydrolyzed by lipase (LP). The schematic diagrams of yolk fractions were proposed to explain the aggregation and dispersed behavior exposed in their changes of structures after hydrolysis, suggesting the aggregated effects of LP on yolk plasma and destructive effects of PLP on yolk granules, which may directly influence their foaming properties.


2021 ◽  
Vol 33 (2) ◽  
pp. 142-155
Author(s):  
Mine Köstekli Büyükcan ◽  
Sibel Karakaya

Emulsifying and foaming properties of plant and animal-sourced proteins; wheat protein hydrolysates (WP1, WP2, and WP3), potato protein isolates (PP1, PP2), pea proteins isolates (PeP1, PeP2), whey protein concentrate (WPC), and buttermilk powder (BMP) were compared with the egg white powder (EWP) and egg yolk powder (EYP). Foaming capacity, stability, emulsion activity, stability, heat stability, morphology, and electrophoretic protein profiles were determined. The proteins representing competitive emulsifying functions were PeP1, WPC, and BMP. Heat treatment for 30 min at 80°C remarkably reduced the emulsion activity (EA) of EYP. Our findings demonstrated that patatin-rich potato protein (PP1), an allergen-free and vegan option, has great potential to replace the foaming function of the egg white. The relationship between the protein profiles of the samples and their functional properties was further discussed in detail.


2020 ◽  
Vol 51 (6) ◽  
pp. 925-936
Author(s):  
Reza Jaberi ◽  
Ahmad Pedram Nia ◽  
Sara Naji‐Tabasi ◽  
Amir Hossein Elhamirad ◽  
Masoud Shafafi Zenoozian

Sign in / Sign up

Export Citation Format

Share Document