Modification of soy protein isolates using combined pre-heat treatment and controlled enzymatic hydrolysis for improving foaming properties

2020 ◽  
Vol 105 ◽  
pp. 105764 ◽  
Author(s):  
Guijiang Liang ◽  
Wenpu Chen ◽  
Xuejiao Qie ◽  
Maomao Zeng ◽  
Fang Qin ◽  
...  
2021 ◽  
pp. 108201322110317
Author(s):  
Alane Cangani Alves ◽  
Lara Martha ◽  
Federico Casanova ◽  
Guilherme M Tavares

The partial replacement of proteins from animal sources by plant proteins in formulated food products has been proposed as useful to improve sustainability aspects of the products without dramatically changing their techno-functional properties. Although several research groups have published on the gelling properties of mixed systems containing whey and soy protein isolates (WPI and SPI), their foaming properties are much less described. In this context, the main objective of this paper was to evaluate the structural and foaming properties of samples containing different mass ratios of WPI:SPI (100:0, 75:25, 50:50, 25:75 and 0:100) before and after heat treatment. The samples were evaluated according to their solubility, foaming capacity (FC), foam microstructure and foam stability (FS). Before heat treatment, mixing SPI to WPI did not affect the solubility of whey proteins, but, after heat treatment, insoluble co-aggregates were formed. Similar FC was measured for all samples despite their WPI:SPI ratio and the applied heat treatment. The partial replacement of WPI by SPI changed the microstructure of the foams and had an antagonistic effect on the FS of the samples, due to the negative effect of insoluble soy protein aggregates and/or insoluble co-aggregates on the reinforcement of the air-water interfacial film.


2006 ◽  
Vol 12 (3) ◽  
pp. 195-204 ◽  
Author(s):  
M. P. Rodríguez ◽  
C. Regue ◽  
A. Bonaldo ◽  
C. Carrara ◽  
L. G. Santiago

The effects of heat treatment on the interaction of salt soluble muscle protein and soy protein isolate in model emulsions were studied. Three soy protein isolates (SPI) were used: a commercial one (CSPI) and two pilot plant samples: a native soy protein isolate (NSPI) and an acid treated soy protein isolate (ASPI). Emulsions were prepared with muscle protein (MP), NSPI, ASPI, CSPI and mixtures of MP and the different SPIs, and then treated at 20, 55, 70, 80 and 90°C. Coalescence, soluble protein and electrophoresis of the aqueous phase of the emulsions were evaluated for each temperature. At 20°C the more native soy protein (NSPI) was compatible with MP, producing a stable emulsion that became more stable during heat treatment. CSPI alone could not form a stable interfacial film through the temperature range, however emulsion stabilisation was achieved at 55°C and 70°C when adding MP. Emulsions prepared with MP ASPI were highly unstable at 20°C, while as the emulsion temperature increased, coalescence decreased abruptly and maintained low values at every temperature. MP, NSPI, ASPI and MP NSPI produced stable emulsions both at 20°C and higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document