Phase behavior, structure and rheology of candelilla wax/fully hydrogenated soybean oil mixtures with and without vegetable oil

2016 ◽  
Vol 89 ◽  
pp. 828-837 ◽  
Author(s):  
N.O. Ramírez-Gómez ◽  
N.C. Acevedo ◽  
J.F. Toro-Vázquez ◽  
J.J. Ornelas-Paz ◽  
E. Dibildox-Alvarado ◽  
...  
Author(s):  
Luz Pérez-Meza ◽  
Miguel Ruiz-Cabrera ◽  
Juan Morales-Rueda ◽  
Jaime Pérez-Martínez

The structuration processes of mixed oleogels produced with candelilla wax (CW, 0 or 3%), fully hydrogenated soybean oil (FH, 5-15%), and microcrystalline cellulose (MC, 0-9%) were studied to define their rheological effects. During the cooling CW crystals performed as nucleation sites for FH. The elastic modulus (G’) of oleogels with FH and 3% CW were more than two orders of magnitude higher than those produced with 0% CW. Adding MC to the oleogels increased slightly the G’. Independently of the amount of MC, oleogels structured with increasing amounts of FH and 0% CW showed the elastic properties scaling of colloidal gels. This behavior was lost by adding 3% CW, implying that in mixed FH-CW oleogels, the CW crystal network dominated the oleogel rheology. The flow point and the mechanical reversibility of oleogels and commercial butter (CB) was also determined. CB showed flow points at 44 and 59% strain and mechanical reversibility values of 29 and 35% of G’ measured in a pre-shear step. Adding MC to oleogels structured with FH and 0% CW increased their flow point (37.2%) near those of CB. This effect was not produced in mixed FH-3% CW oleogels. The mechanical recovery of oleogels produced with FH, MC, and 0% CW tend to decrease as the FH content increased. CW and MC did not show a simple concentration–effect relationship for the mechanical recovery. Nonetheless, oleogels structured with 3% CW and 10% FH and 6-9% MC showed mechanical recovery (~60%) close to that of CB.


2018 ◽  
Vol 58 (10) ◽  
pp. 1829
Author(s):  
M. Mohiti-Asli ◽  
M. Ghanaatparast-Rashti

This study investigated the effect of feeding vitamin E, vitamin C, and two sources of vegetable oil on immune response and meat quality of broilers. A total of 320 one-day-old chicks were used in a completely randomised design with eight treatments arranged as a 2 × 2 × 2 factorial with two levels of vitamin E (0 and 200 mg/kg), two levels of vitamin C (0 and 1000 mg/kg), and two sources of vegetable oil (soybean and canola). Dietary supplementation of either vitamin E or C increased (P < 0.05) secondary humoral response, whereas oil sources had no significant effect. Broilers fed soybean oil had lower cellular response to the phytohemagglutinin skin test than those fed canola oil in diet, and supplementation of vitamin E increased cellular immune response. However, fat, cholesterol and pH of meat were not affected by source of oil or antioxidants, lipid oxidation was higher (P < 0.05) in thigh and breast meat of broilers fed soybean oil than canola oil. Dietary supplementation of vitamin E decreased (P < 0.05) lipid oxidation in thigh and breast of broilers fed diet containing soybean oil, without any effect on meat oxidation of those fed canola oil. Dietary supplementation of vitamin C increased lipid oxidation in thigh meat of broilers (P < 0.05). It can be concluded that inclusion of soybean oil to the diet, compared with canola oil, increased need for antioxidant. Vitamin E had beneficial effects on immune response and reduced meat lipid oxidation; nonetheless future studies should explore the antioxidant effect of vitamin C in stored meat.


2006 ◽  
Vol 70 (6) ◽  
pp. c365-c372 ◽  
Author(s):  
Arnoldo Lopez-Hernandez ◽  
Hugo S. Garcia ◽  
Charles G. Hill

TAPPI Journal ◽  
2020 ◽  
Vol 19 (9) ◽  
pp. 473-477
Author(s):  
YAO NTIFAFA ◽  
MARIA SZAJDA-LAM ◽  
ASHOK GHOSH ◽  
PETER W. HART

Vegetable soybean oil is commonly used in cooking foods that are packaged in takeaway paper-board containers. Vegetable oil is hydrophobic, and in sufficiently high concentration, could interfere with interfiber bonding and result in paper strength loss. In order to quantify the effect of oil on the resulting paperboard strength, it is necessary to quantify the oil content in paper. A lab method was evaluated to determine the soybean oil content in paper. Handsheets were made with pulps previously treated with different proportions of vegetable oil. Pyrolysis gas chromatography-mass spectrometry (pyGCMS) was used to quantify the amount of oil left in the handsheets. The results revealed a strong correlation between the amount of oil applied to the initial pulp and the amount of oil left in the handsheets. In addition, the effect of vegetable oils on paper strength may be affected by the cooking process. Vegetable oil is known to degrade over time in the presence of oxygen, light, and temperature. The vegetable oil was put in an oven to imitate the oil lifecycle during a typical pizza cooking process. The cooked oil was then left at room temperature and not protected from air (oxygen) or from normal daylight. The heated, then cooled, oil was stored over a period of 13 weeks. During this time, samples of the aged oil were tested as part of a time-based degradation study of the cooked and cooled oil.


2018 ◽  
Vol 58 (1) ◽  
pp. 428-439 ◽  
Author(s):  
Qianhui Zhao ◽  
Zhiping Li ◽  
Shuoliang Wang ◽  
Fengpeng Lai ◽  
Huazhou Li

2021 ◽  
Vol 302 ◽  
pp. 01009
Author(s):  
Chanatip Dejkajorn ◽  
Panawan Suttiarporn ◽  
Hussanai Sukkathanyawat ◽  
Kittisak Wichianwat ◽  
Saichon Sriphan ◽  
...  

Spent bleaching earth (SBE) which is generated from bleaching process is a valuable industrial waste of edible vegetable oil production because of residual edible vegetable oil absorbed. The residual oil in spent bleaching earth can be recovered and reused for application in the industries such as the production of biodiesel and lubricant. Currently, microwave-assisted extraction (MAE) technique is widely used because this method has a shorter extraction time and less solvent consumption when compared with traditional methods. In this study, MAE combined with solvent reflux was optimized using solvent screening experiments and response surface methodology (RSM) to obtain the highest yield of MAE extraction of residual soybean oil from spent bleaching earth. The extraction yield of residual soybean oil obtained from selected solvent were hexane-ethanol mixture (2:1 v/v, 10.19%) > hexane-ethanol mixture (1:1 v/v, 10.00%) >hexane-ethanol mixture (1:2 v/v, 9.98%) > hexane-ethanol mixture (1:3 v/v, 9.83%) > hexane-ethanol mixture (3:1 v/v, 8.59%) > hexane (8.17%) > acetone (7.73%). The regression coefficient (R-squared = 0.9852) expresses the accuracy of the regression and indicates the relationship between experimental data and predicted result, with high regression coefficient close to 1, which is remarkably desired. The experiment conditions for optimal MAE extraction of residual soybean oil from SBE were hexane-ethanol mixture (2:1 v/v), liquid to solid ratio 15.56:1 mL/g, extraction time 12.22 min, and microwave power 350 W. Under such conditions, the highest predicted value of the extraction yield of residual soybean oil was 10.43%.


2007 ◽  
Vol 21 (6) ◽  
pp. 3746-3747 ◽  
Author(s):  
Simoni M. Plentz Meneghetti ◽  
Mario R. Meneghetti ◽  
Tatiana M. Serra ◽  
Daniela C. Barbosa ◽  
Carlos R. Wolf

1991 ◽  
Vol 39 (3) ◽  
pp. 542-548 ◽  
Author(s):  
Elizabeth M. Calvey ◽  
Richard E. McDonald ◽  
Samuel W. Page ◽  
Magdi M. Mossoba ◽  
Larry T. Taylor

Sign in / Sign up

Export Citation Format

Share Document