Biodiesel Production from Vegetable Oil Mixtures: Cottonseed, Soybean, and Castor Oils

2007 ◽  
Vol 21 (6) ◽  
pp. 3746-3747 ◽  
Author(s):  
Simoni M. Plentz Meneghetti ◽  
Mario R. Meneghetti ◽  
Tatiana M. Serra ◽  
Daniela C. Barbosa ◽  
Carlos R. Wolf
2021 ◽  
Vol 25 (4) ◽  
pp. 537-542
Author(s):  
C.A. Odega ◽  
G.T. Anguruwa ◽  
C.O. Fakorede

Biodiesel is a fuel produced from renewable resources; it is a clean alternative fuel, which has drawn the attention of energy researchers for the last two decades due to the disturbing effect of climate change caused by diesel fuel. This paper focuses on showcasing the qualities of biodiesel produced from used vegetable oil and the positive impact on the alarming change in climate today. This paper presents an experimental investigation on production of biodiesel from used vegetable oil (UVO) gotten from a road side bean cake (akara) seller. The oil that was intended to be thrown out was de-odoured and filtered to remove impurities. The filtered oil was then used for biodiesel production and characterized with physical and fuel properties such as density, viscosity, cloud point, refractive index, specific gravity, ash content, moisture content, flash point and cloud point. The results obtained were afterwards compared to ASTM (American Society for Testing and Materials) and EN (Europe’s) international standards. Two biodiesels samples were produced at different temperatures but the same timings. The biodiesel were produced at 700C at 40mins (biodiesel A) and 1000C at 40mins (biodiesel B) with values of specific gravity (0.98 kg/m3; 0.90 kg/m3), density (936kg/m3; 882kg/m3), kinematic viscosity (1.5mm/s2; 5.5 mm/s2), cloud point (150C; 20C), flash point (2600C min; 2000C min), moisture content (0.07%; 0.04%), refractive index (1.4609; 1.4398) and ash point (0.24%; 0.01%) respectively. On comparison, biodiesel A couldn’t match up to the international standards while biodiesel matched up to the standards given.


2007 ◽  
Vol 7 (1 & 2) ◽  
pp. 83
Author(s):  
Mary Grace M. Oliveros ◽  
Amiliza B. Baiting ◽  
Menchie G. Lumain ◽  
Maria Theresa I. Cabaraban

Waste vegetable oil, mainly coming from frying residues, can be used as raw material to obtain a diesel fuel (biodiesel). Biodiesel, a nontoxic, biodegradable, diesel-like fuel, is an important energy alternative capable of decreasing environmental problems caused by the consumption of fossil fuels. The utilization of waste vegetable oils as raw material in biodiesel production was studied. Research was undertaken to establish the availability of used vegetable oil to supply a biodiesel process. It is intended that this work forms an academic study combined with an environmental and technological analysis of the merits of biodiesel as a sustainable fuel. Laboratory experimentation investigated the possibility of using waste vegetable oil from the local fast food chains, and potassium hydroxide as catalyst for the transesterification process. The cleaned waste vegetable oil undergoes transesterification for 4 hours, after which, the biodiesel is separated from the glycerin by gravity. Washing is necessary to remove residual catalyst or soap. Overall material balance for the process gives: 1 kg Waste Vegetable oil + 0.18 kg EtOH + 0.01 kg KOH → 0.74 kg Biodiesel + 0.44 kg Glycerin The biodiesel, in pure form (B100) and in 50% proportion (B50) with petroleum diesel, was run in an essentially unmodified Toyota 2C diesel engine. Smoke density (opacity) and CO exhaust emission both decreased with B50. However, Nox increased with B50. Fuel consumption during engine power testing is significantly greater using the biodiesel, but is also significantly reduced with B50.


Fuel ◽  
2010 ◽  
Vol 89 (10) ◽  
pp. 2939-2944 ◽  
Author(s):  
Junhua Zhang ◽  
Shangxing Chen ◽  
Rui Yang ◽  
Yuanyuan Yan

ACS Omega ◽  
2020 ◽  
Vol 5 (28) ◽  
pp. 17471-17478 ◽  
Author(s):  
Yazhuo Wang ◽  
Denian Li ◽  
Dandan Zhao ◽  
Yukun Fan ◽  
Jingwang Bi ◽  
...  

2018 ◽  
Vol 67 ◽  
pp. 02045
Author(s):  
SD Sumbogo Murti ◽  
J. Prasetyo ◽  
G.W. Murti ◽  
Z. D. Hastuti ◽  
F. M. Yanti

The attractiveness of biodiesel as an alternative fuel compared to fossil fuels because it has many advantages such as the availability of abundant raw materials, more environmentally friendly, high combustion efficiency, low sulphur content, high cetane number and biodegradability. Making biodiesel from straight vegetable oil (VGO) has been done through the catalytic hydrogenation process. A VGO of callophylum inophyllum oil was treated via degumming and neutralisation to remove all impurities before hydroprocessing. Hydroprocessing was carried out in a 500ml autoclave at 30 – 50 MPa of initial hydrogen pressure, 300 – 400oC of reaction temperature and equipped with stirrer and cooling system. NiMo/Al2O3 catalyst was activated with CS2 mixture at 370oC prior to the reaction. Some physical and chemical properties of the catalytic hydroprocessing product have been investigated in accordance to ASTM standard. The measurement result of product varies according to the operation condition. The result showed that callophyllum inophyllum oil can be used as raw material for biodiesel production over NiMo/Al2O3. Sulfided NiMo/Al2O3 catalysts are preferred due to high diesel yield.


2009 ◽  
Vol 100 (12) ◽  
pp. 3036-3042 ◽  
Author(s):  
Stella Bezergianni ◽  
Aggeliki Kalogianni ◽  
Iacovos A. Vasalos

2016 ◽  
Vol 723 ◽  
pp. 551-555
Author(s):  
Sureerat Namwong ◽  
Vittaya Punsuvon

Biodiesel is derived from triglycerides by transesterification with methanol or ethanol. In this study, used vegetable oil was transesterified with ethanol using sodium methoxide as catalyst. Parameter affecting the process transesterification were investigated follow this detail. The effects of catalyst to oil volume ratio (3-7:100 %v/v), ethanol to oil volume ratio (20-40:100 %v/v), reaction temperature (55-70 °C) and reaction time (15-90 min.) on the percentage conversion of fatty acid ethyl ester (FAEE) and fatty acid methyl ester (FAME). The FAEE and FAME conversion were detected by 1H-NMR. The result showed that the maximum percentages at 84 % of FAEE and 16 % of FAME were obtained. These conversions were obtained at the catalyst to oil volume ratio of 4:100 %v/v, ethanol to oil volume ratio of 35:100 %v/v, temperature of 65 °C and reaction time of 75 min. The properties of mixed FAEE and FAME biodiesel were within the limits of EN standard. The confirmation result by 1H-NMR and ATR-FTIR also indicated the conversion of used vegetable oil into biodiesel.


Sign in / Sign up

Export Citation Format

Share Document