ER stress related lipid accumulation and apoptotic cell death in nonalcoholic fatty liver diesease

2017 ◽  
Vol 108 ◽  
pp. S58
Author(s):  
Tugce Demirel ◽  
Erdi Sozen ◽  
Ali Sahin ◽  
Betul Karademir ◽  
Nesrin Kartal Ozer
Author(s):  
Taha Haffar ◽  
Félix-Antoine Bérubé-Simard ◽  
Jean-Claude Tardif ◽  
Nicolas Bousette

AbstractAbstract: Introduction: Diabetes is a major contributor to cardiovascular disease. There is a growing body of evidence pointing towards intra-myocellular lipid accumulation as an integral etiological factor. Here we aimed to determine the effect of two common fatty acids on lipid accumulation and cellular stress in primary cardiomyocytes.Methods: We evaluated lipid accumulation biochemically (by triacylglyceride assay and radiolabeled fatty acid uptake assay) as well as histologically (by BODIPY 493/503 staining) in mouse and rat neonatal cardiomyocytes treated with saturated (palmitate) or mono-unsaturated (oleate) fatty acids. Endoplasmic reticulum (ER) stress was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. Cell viability was assessed by propidium iodide staining.Results: We found that both oleate and palmitate led to significant increases in intracellular lipid in cardiomyocytes; however there were distinct differences in the qualitative nature of BODIPY staining between oleate and palmitate treated cardiomyocytes. We also show that palmitate caused significant apoptotic cell death and this was associated with ER stress. Interestingly, co-administration of oleate with palmitate abolished cell death, and ER stress. Finally, palmitate treatment caused a significant increase in ubiquitination of Grp78, a key compensatory ER chaperone.Conclusion: Palmitate causes ER stress and apoptotic cell death in primary cardiomyocytes and this is associated with apparent differences in BODIPY staining compared to oleate treated cardiomyocytes. Importantly, the lipotoxic effects of palmitate are abolished with the co-administration of oleate.


Proceedings ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 9
Author(s):  
Amani Abdulmunem ◽  
Pınar Obakan-Yerlikaya ◽  
Elif-Damla Arisan ◽  
Ajda Coker-Gurkan

Breast cancer is the most common cancer in women worldwide and the second most common cancer overall. Autocrine growth hormone (GH) expression induced cell proliferation, growth, invasion-metastasis in vitro and in vivo breast cancer models. Moreover, forced GH signaling acts as a drug resistance profile in breast cancer cell lines against chemotherapeutic drugs such as tamoxifen, mitomycin C, doxorubicin and curcumin. Triptolide, an active plant extract from Tripterygium wilfordii, has been shown to induce apoptotic cell death in various cancer cells such a prostate, colon, breast cancer. Metformin, a common therapeutic agent for type II Diabetes mellitus, has been shown to induce autophagy, endoplasmic reticulum (ER) stress and apoptotic cell death in cancer cells. Our aim is to demonstrate the potential effect of metformin on triptolide-mediated drug resistance in autocrine GH expressing MDA-MB-231 breast cancer cells through Endoplasmic reticulum (ER) stress. Autocrine GH-mediated triptolide (20 nM) resistance overcame by metformin (2 mM) co-teatment in MDA-MB231 breast cancer cells through accelerating cell viability loss, growth inhibition compared to alone triptolide treatment. Combined treatment increased apoptotic cell death via CHOP activation, IRE1α upregulation. Consequently, we suggest that triptolide can be more effective with metformin combination in MDA-MB-231 GH+ drug resistant breast cancer cells.


2019 ◽  
Vol 47 (01) ◽  
pp. 237-257 ◽  
Author(s):  
En-Yun Su ◽  
Yung-Lin Chu ◽  
Fu-Shin Chueh ◽  
Yi-Shih Ma ◽  
Shu-Fen Peng ◽  
...  

The aim of this study was to investigate the effects of bufalin on human nasopharyngeal carcinoma NPC-TW 076 cells in vitro. Bufalin is a cardiotonic steroid and a key active ingredient of the Chinese medicine ChanSu. The extracts of Chansu are used for various cancer treatments in China. In the present study, bufalin induced cell morphological changes, decreased total cell viability and induced G2/M phase arrest of cell cycle in NPC-TW 076 cells. Results also indicated that bufalin induced chromatin condensation (cell apoptosis) and DNA damage by DAPI staining and comet assay, respectively. The induced apoptotic cell death was further confirmed by annexin-V/PI staining assay. In addition, bufalin also increased ROS and Ca[Formula: see text] production and decreased the levels of [Formula: see text]. Furthermore, the alterations of ROS, ER stress and apoptosis associated protein expressions were investigated by Western blotting. Results demonstrated that bufalin increased the expressions of ROS associated proteins, including SOD (Cu/Zn), SOD2 (Mn) and GST but decreased that of catalase. Bufalin increased ER stress associated proteins (GRP78, IRE-1[Formula: see text], IRE-1[Formula: see text], caspase-4, ATF-6[Formula: see text], Calpain 1, and GADD153). Bufalin increased the pro-apoptotic proteins Bax, and apoptotic associated proteins (cytochrome c, caspase-3, -8 and -9, AIF and Endo G) but reduced anti-apoptotic protein Bcl-2 in NPC-TW 076 cells. Furthermore, bufalin elevated the expressions of TRAIL-pathway associated proteins (TRAIL, DR4, DR5, and FADD). Based on these findings, we suggest bufalin induced apoptotic cell death via caspase-dependent, mitochondria-dependent and TRAIL pathways in human nasopharyngeal carcinoma NPC-TW 076 cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1360-1360
Author(s):  
Jieun Jang ◽  
Ju-In Eom ◽  
Hoi-kyung Jeung ◽  
So-Young Seol ◽  
Haerim Chung ◽  
...  

Abstract Background: Histone methyltransferase (HMTase) G9a regulates the transcription of multiple genes by primarily catalyzing dimethylation of histone H3 lysine 9 (H3K9me2), as well as several non-histone lysine sites. Recently, pharmacological and genetic targeting of the G9a was shown to be efficient in slowing down acute myeloid leukemia (AML) cell proliferation in a mouse model and human AML cell lines thus making this HMTase potential target for epigenetic therapy of AML. Activation of adaptive mechanisms to drug plays a crucial role in drug resistance and relapse by allowing cell survival under stressful conditions. Therefore, inhibition of the adaptive response is considered as a prospective therapeutic strategy. The tolerance mechanism to HMTase regulation in leukemia cell is unclear yet. The PERK-eIF2α phosphorylation pathway is an important arm of the unfolded protein response (UPR), which is induced under conditions of endoplasmic reticulum (ER) stress. Recent previous studies showed that pro-survival ER stress is induced in cancer cells and contributes to development of drug resistance. Methods: We investigated the levels of apoptosis and ER stress by G9a inhibitor BIX-01294 in leukemia cell lines. U937, cytarabine-resistant U937 (U937/AR) and KG1 were used. U937/AR cell line was established in our laboratory by exposing parental U937 cells to stepwise increasing concentrations of cytarabine. Results: We initially examined the expression of G9a in leukemia cell lines and the primary AML cells obtained from a patient at the different time point. In U937/AR cells and primary AML cells obtained at relapse, G9a expression was increased compare to that in U937 cells and primary AML cells obtained at diagnosis, respectively. G9a expression was also increased in KG1 cells. In both of U937 and U937/AR, apoptotic cell death was induced by BIX-01294 in a dose-dependent manner. In contrast, apoptotic cell death was minimal in KG1 cells which are enriched in cells expressing a leukemia stem cell phenotype (CD34+CD38-). To address the activation of ER stress response by BIX-01294 in leukemia cells, we examined the effect of BIX-01294 treatment on PERK and eIF2α protein expression and phosphorylation levels. We found that treatment of U937, U937/AR, KG1 cells with 3μM of BIX-01294 for 24h caused an upregulation of phosphorylated PERK and eIF2α. The upregulation of PERK phosphorylation was associated with a decrease in PERK protein levels after treatment. To further address the role of the PERK-eIF2α phosphorylation in BIX-01294 sensitivity, we examined whether PERK inhibition using small interfering RNA (siRNA) or specific inhibitor could sensitize cells to BIX-01294-mediated death. The siRNA against PERK effectively inhibited BIX-01294-mediated phosphorylation of PERK and eIF2α in U937 and U937/AR cells. The addition of PERK siRNA led to a significant increase in the extent of BIX-01294-induced apoptotic cell death in U937 (P = 0.0003) and U937/AR (P < 0.0001) as compared with that of BIX-01294 treatment alone. PERK inhibitor GSK260641 significantly increased BIX-01294-induced apoptotic cell death in U937 (P < 0.0001) and U937/AR (P = 0.006) cells. To our surprise, addition of PERK siRNA or GSK260641 increased the sensitivity of KG1 cells to BIX-01294-mediated death in a dose-dependent manner (P = 0.0003 for siRNA, P = 0.0053 for GSK260641). Conclusion: These data demonstrated that PERK-eIF2α activation has a pro-survival function to G9a inhibitor in leukemia cells and mediates resistance of AML stem cells to G9a inhibitor treatment. The PERK-eIF2α phosphorylation arm may represent a suitable target for combating resistance to G9a inhibitor in AML. The mechanisms underlying the increased sensitivity of AML cells with PERK inhibition to G9a inhibitor are unclear at present and are needed to define in further studies. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Marianna Holczer ◽  
Boglárka Besze ◽  
Veronika Zámbó ◽  
Miklós Csala ◽  
Gábor Bánhegyi ◽  
...  

The maintenance of cellular homeostasis is largely dependent on the ability of cells to give an adequate response to various internal and external stimuli. We have recently proposed that the life-and-death decision in endoplasmic reticulum (ER) stress response is defined by a crosstalk between autophagy, apoptosis, and mTOR-AMPK pathways, where the transient switch from autophagy-dependent survival to apoptotic cell death is controlled by GADD34. The aim of the present study was to investigate the role of epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, in promoting autophagy-dependent survival and to verify the key role in connecting GADD34 with mTOR-AMPK pathways upon prolonged ER stress. Our findings, obtained by using HEK293T cells, revealed that EGCG treatment is able to extend cell viability by inducing autophagy. We confirmed that EGCG-induced autophagy is mTOR-dependent and PKA-independent; furthermore, it also required ULK1. We show that pretreatment of cells with EGCG diminishes the negative effect of GADD34 inhibition (by guanabenz or siGADD34 treatment) on autophagy. EGCG was able to delay apoptotic cell death by upregulating autophagy-dependent survival even in the absence of GADD34. Our data suggest a novel role for EGCG in promoting cell survival via shifting the balance of mTOR-AMPK pathways in ER stress.


2013 ◽  
Vol 139 (9) ◽  
pp. 1551-1562 ◽  
Author(s):  
Kulthida Vaeteewoottacharn ◽  
Ryusho Kariya ◽  
Kouki Matsuda ◽  
Manabu Taura ◽  
Chaisiri Wongkham ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Panida Sittipo ◽  
Hyun Kyu Kim ◽  
Jaeseok Han ◽  
Man Ryul Lee ◽  
Yun Kyung Lee

Abstract Background Vitamin D3 is important for normal function of the intestinal epithelial cells (IECs). In this study, we aimed to investigate the effects of vitamin D3 on the differentiation, stemness, and viability of healthy IECs in intestinal organoids. Methods Intestinal organoids derived from mouse small intestine were treated with vitamin D3, and the effects on intestinal stemness and differentiation were evaluated using real-time PCR and immunofluorescence staining of the distinct lineage markers. Cell viability was analyzed using viability and apoptosis assays. Results Vitamin D3 enhanced IEC differentiation into the distinct lineages of specialized IECs, including Paneth, goblet, and enteroendocrine cells and absorptive enterocytes. Decreased expression levels of leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) and the presence of several LGR5-green fluorescent protein (GFP)-positive cells were observed in vitamin D3-treated organoids derived from LGR5-GFP mice. The formation of the crypt-villus structure was also inhibited by vitamin D3, suggesting that vitamin D3 suppresses intestinal cell stemness. Furthermore, the expression levels of unfolded protein response genes, C/EBP homologous protein (CHOP), and activating transcription factor 6 (ATF6) were upregulated in vitamin D3-treated organoids. Moreover, vitamin D3 promoted apoptotic cell death in intestinal cells, which may be associated with the decrease in intestinal stemness. LGR5 gene expression, ISC number, and apoptotic cell death were partially recovered in the presence of the ER stress inhibitor tauroursodeoxycholic acid (TUDCA), suggesting that intestinal stemness suppression and intestinal apoptosis occurred via ER stress activation. Conclusions Our study provides important insights into the effects of vitamin D3 on the induction of IEC differentiation and apoptotic cell death, and inhibition of intestinal stemness accompanied by ER stress augmentation.


Sign in / Sign up

Export Citation Format

Share Document