The role of ceramide accumulation in human induced pluripotent stem cell-derived cardiomyocytes on mitochondrial oxidative stress and mitophagy

2021 ◽  
Vol 167 ◽  
pp. 66-80
Author(s):  
Mohamed Bekhite ◽  
Andres González-Delgado ◽  
Sascha Hübner ◽  
Pëllumb Haxhikadrija ◽  
Tom Kretzschmar ◽  
...  
2018 ◽  
Vol 360 ◽  
pp. 88-98 ◽  
Author(s):  
Liang Guo ◽  
Sandy Eldridge ◽  
Michael Furniss ◽  
Jodie Mussio ◽  
Myrtle Davis

2019 ◽  
Vol 115 (5) ◽  
pp. 949-959 ◽  
Author(s):  
Nazish Sayed ◽  
Mohamed Ameen ◽  
Joseph C Wu

Abstract Treatment of cancer has evolved in the last decade with the introduction of new therapies. Despite these successes, the lingering cardiotoxic side-effects from chemotherapy remain a major cause of morbidity and mortality in cancer survivors. These effects can develop acutely during treatment, or even years later. Although many risk factors can be identified prior to beginning therapy, unexpected toxicity still occurs, often with lasting consequences. Specifically, cardiotoxicity results in cardiac cell death, eventually leading to cardiomyopathy and heart failure. Certain risk factors may predispose an individual to experiencing adverse cardiovascular effects, and when unexpected cardiotoxicity occurs, it is generally managed with supportive care. Animal models of chemotherapy-induced cardiotoxicity have provided some mechanistic insights, but the precise mechanisms by which these drugs affect the heart remains unknown. Moreover, the genetic rationale as to why some patients are more susceptible to developing cardiotoxicity has yet to be determined. Many genome-wide association studies have identified genomic variants that could be associated with chemotherapy-induced cardiotoxicity, but the lack of validation has made these studies more speculative rather than definitive. With the advent of human induced pluripotent stem cell (iPSC) technology, researchers not only have the opportunity to model human diseases, but also to screen drugs for their efficacy and toxicity using human cell models. Furthermore, it allows us to conduct validation studies to confirm the role of genomic variants in human diseases. In this review, we discuss the role of iPSCs in modelling chemotherapy-induced cardiotoxicity.


2019 ◽  
Vol 3 (s1) ◽  
pp. 26-26
Author(s):  
Maria Giovanna Trivieri ◽  
Francesca Stillitano ◽  
Delaine Ceholski ◽  
Irene Turnbull ◽  
Kevin Costa ◽  
...  

OBJECTIVES/SPECIFIC AIMS: To study the biology of Phosholamban (PLN) in a human relevant model. METHODS/STUDY POPULATION: State of the art stem-cell technologies using iPSC-CMs derived from carriers of a lethal PLN mutation. RESULTS/ANTICIPATED RESULTS: Our preliminary data demonstrate that this particular PLN mutation (L39) results in reduced expression and mis-localization of PLN as well as increased incidence of early after depolarization in isolated iPSC-CMs. DISCUSSION/SIGNIFICANCE OF IMPACT: Phospholamban (PLN) is a critical regulator of Ca++ homeostasis yet many uncertainties still remain regarding its role in humans. Our study will provide unique insights into the pathophysiology of this protein in HF.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Parvin Forghani ◽  
Aysha Rashid ◽  
Dong Li ◽  
Anant Mandawat ◽  
Chunhui XU

Cardiovascular toxicity post Carfilzomib (Cfz/Kyprolis) therapy has been identified in several clinical settings. A prevalent challenge in side effects of anti-cancer drugs is the translation of findings from preclinical research into clinical practice. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are being used as a physiological in vitro model to overcome some of these challenges. Here we used both 2D and 3D hiPSC-CMs to elucidate the underlying mechanism of post-Cfz cardiotoxicity. hiPSC-CMs were exposed to clinically relevant doses of Cfz based on C max for Cfz (5.88 μM). Data normalization against the control group demonstrates significant reduction in cell viability following two days of treatment with Cfz in 3 different cell lines (IMR-90, SCVI273 and 902). Increased Caspase3/7 activity post Cfz treatment paralleled with a substantial decrease in mitochondrial membrane potential and increase in oxidative stress following Cfz treatment. Also, significant decrease in oxygen consumption rate was observed after one-day exposure. In addition, we observed impaired Ca 2+ handling at the single cell level following Cfz treatment. Using video microscopy with motion vector analysis we also observed significant decrease in contractility of 3D hiPSC-CMs following Cfz treatment. Additionally, we observed disrupted expression of α-actinin, alterations in structural organization of sarcomeres, circularity and aspect ratio. Altogether, these results suggest that Cfz induced cardiotoxicity as indicated by cell viability, oxidative stress, mitochondrial and structural damages along with abnormal Ca 2+ handing and contractility dysfunction.


Stem Cells ◽  
2013 ◽  
Vol 31 (4) ◽  
pp. 682-692 ◽  
Author(s):  
Yun-Shen Chan ◽  
Jonathan Göke ◽  
Xinyi Lu ◽  
Nandini Venkatesan ◽  
Bo Feng ◽  
...  

Cancers ◽  
2013 ◽  
Vol 5 (4) ◽  
pp. 959-984 ◽  
Author(s):  
Shyh-Shin Chiou ◽  
Sophie Wang ◽  
Deng-Chyang Wu ◽  
Ying-Chu Lin ◽  
Li-Pin Kao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document