LHV and HHV prediction model using regression analysis with the help of bond energies for biodiesel

Fuel ◽  
2021 ◽  
Vol 301 ◽  
pp. 121065
Author(s):  
Sinan Erdoğan
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Chao Guo ◽  
Ya-yue Gao ◽  
Qian-qian Ju ◽  
Chun-xia Zhang ◽  
Ming Gong ◽  
...  

Abstract Background The heterogenous cytogenetic and molecular variations were harbored by AML patients, some of which are related with AML pathogenesis and clinical outcomes. We aimed to uncover the intrinsic expression profiles correlating with prognostic genetic abnormalities by WGCNA. Methods We downloaded the clinical and expression dataset from BeatAML, TCGA and GEO database. Using R (version 4.0.2) and ‘WGCNA’ package, the co-expression modules correlating with the ELN2017 prognostic markers were identified (R2 ≥ 0.4, p < 0.01). ORA detected the enriched pathways for the key co-expression modules. The patients in TCGA cohort were randomly assigned into the training set (50%) and testing set (50%). The LASSO penalized regression analysis was employed to build the prediction model, fitting OS to the expression level of hub genes by ‘glmnet’ package. Then the testing and 2 independent validation sets (GSE12417 and GSE37642) were used to validate the diagnostic utility and accuracy of the model. Results A total of 37 gene co-expression modules and 973 hub genes were identified for the BeatAML cohort. We found that 3 modules were significantly correlated with genetic markers (the ‘lightyellow’ module for NPM1 mutation, the ‘saddlebrown’ module for RUNX1 mutation, the ‘lightgreen’ module for TP53 mutation). ORA revealed that the ‘lightyellow’ module was mainly enriched in DNA-binding transcription factor activity and activation of HOX genes. The ‘saddlebrown’ module was enriched in immune response process. And the ‘lightgreen’ module was predominantly enriched in mitosis cell cycle process. The LASSO- regression analysis identified 6 genes (NFKB2, NEK9, HOXA7, APRC5L, FAM30A and LOC105371592) with non-zero coefficients. The risk score generated from the 6-gene model, was associated with ELN2017 risk stratification, relapsed disease, and prior MDS history. The 5-year AUC for the model was 0.822 and 0.824 in the training and testing sets, respectively. Moreover, the diagnostic utility of the model was robust when it was employed in 2 validation sets (5-year AUC 0.743–0.79). Conclusions We established the co-expression network signature correlated with the ELN2017 recommended prognostic genetic abnormalities in AML. The 6-gene prediction model for AML survival was developed and validated by multiple datasets.


Healthcare ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 853
Author(s):  
Jee-Yun Kim ◽  
Jeong Yee ◽  
Tae-Im Park ◽  
So-Youn Shin ◽  
Man-Ho Ha ◽  
...  

Predicting the clinical progression of intensive care unit (ICU) patients is crucial for survival and prognosis. Therefore, this retrospective study aimed to develop the risk scoring system of mortality and the prediction model of ICU length of stay (LOS) among patients admitted to the ICU. Data from ICU patients aged at least 18 years who received parenteral nutrition support for ≥50% of the daily calorie requirement from February 2014 to January 2018 were collected. In-hospital mortality and log-transformed LOS were analyzed by logistic regression and linear regression, respectively. For calculating risk scores, each coefficient was obtained based on regression model. Of 445 patients, 97 patients died in the ICU; the observed mortality rate was 21.8%. Using logistic regression analysis, APACHE II score (15–29: 1 point, 30 or higher: 2 points), qSOFA score ≥ 2 (2 points), serum albumin level < 3.4 g/dL (1 point), and infectious or respiratory disease (1 point) were incorporated into risk scoring system for mortality; patients with 0, 1, 2–4, and 5–6 points had approximately 10%, 20%, 40%, and 65% risk of death. For LOS, linear regression analysis showed the following prediction equation: log(LOS) = 0.01 × (APACHE II) + 0.04 × (total bilirubin) − 0.09 × (admission diagnosis of gastrointestinal disease or injury, poisoning, or other external cause) + 0.970. Our study provides the mortality risk score and LOS prediction equation. It could help clinicians to identify those at risk and optimize ICU management.


Author(s):  
Sneha Sharma ◽  
Raman Tandon

Abstract Background Prediction of outcome for burn patients allows appropriate allocation of resources and prognostication. There is a paucity of simple to use burn-specific mortality prediction models which consider both endogenous and exogenous factors. Our objective was to create such a model. Methods A prospective observational study was performed on consecutive eligible consenting burns patients. Demographic data, total burn surface area (TBSA), results of complete blood count, kidney function test, and arterial blood gas analysis were collected. The quantitative variables were compared using the unpaired student t-test/nonparametric Mann Whitney U-test. Qualitative variables were compared using the ⊠2-test/Fischer exact test. Binary logistic regression analysis was done and a logit score was derived and simplified. The discrimination of these models was tested using the receiver operating characteristic curve; calibration was checked using the Hosmer—Lemeshow goodness of fit statistic, and the probability of death calculated. Validation was done using the bootstrapping technique in 5,000 samples. A p-value of <0.05 was considered significant. Results On univariate analysis TBSA (p <0.001) and Acute Physiology and Chronic Health Evaluation II (APACHE II) score (p = 0.004) were found to be independent predictors of mortality. TBSA (odds ratio [OR] 1.094, 95% confidence interval [CI] 1.037–1.155, p = 0.001) and APACHE II (OR 1.166, 95% CI 1.034–1.313, p = 0.012) retained significance on binary logistic regression analysis. The prediction model devised performed well (area under the receiver operating characteristic 0.778, 95% CI 0.681–0.875). Conclusion The prediction of mortality can be done accurately at the bedside using TBSA and APACHE II score.


2021 ◽  
Author(s):  
Lu Ma ◽  
Dong Cheng ◽  
Qinghua Li ◽  
Jingbo Zhu ◽  
Yu Wang ◽  
...  

Abstract Objective: To explore the predictive value of white blood cell (WBC), monocyte (M), neutrophil-to-lymphocyte ratio (NLR), fibrinogen (FIB), free prostate-specific antigen (fPSA) and free prostate-specific antigen/prostate-specific antigen (f/tPSA) in prostate cancer (PCa).Materials and methods: Retrospective analysis of 200 cases of prostate biopsy and collection of patients' systemic inflammation indicators, biochemical indicators, PSA and fPSA. First, the dimensionality of the clinical feature parameters is reduced by the Lass0 algorithm. Then, the logistic regression prediction model was constructed using the reduced parameters. The cut-off value, sensitivity and specificity of PCa are predicted by the ROC curve analysis and calculation model. Finally, based on Logistic regression analysis, a Nomogram for predicting PCa is obtained.Results: The six clinical indicators of WBC, M, NLR, FIB, fPSA, and f/tPSA were obtained after dimensionality reduction by Lass0 algorithm to improve the accuracy of model prediction. According to the regression coefficient value of each influencing factor, a logistic regression prediction model of PCa was established: logit P=-0.018-0.010×WBC+2.759×M-0.095×NLR-0.160×FIB-0.306×fPSA-2.910×f/tPSA. The area under the ROC curve is 0.816. When the logit P intercept value is -0.784, the sensitivity and specificity are 72.5% and 77.8%, respectively.Conclusion: The establishment of a predictive model through Logistic regression analysis can provide more adequate indications for the diagnosis of PCa. When the logit P cut-off value of the model is greater than -0.784, the model will be predicted to be PCa.


2020 ◽  
Author(s):  
Wanli Yang ◽  
Lili Duan ◽  
Xinhui Zhao ◽  
Liaoran Niu ◽  
Yiding Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of lethal diseases worldwide. Autophagy-associated genes play a crucial role in the cellular processes of GC. Our study aimed to investigate and identify the prognostic potential of autophagy-associated genes signature in GC. Methods: RNA-seq and clinical information of GC and normal controls were downloaded from The Cancer Genome Atlas (TCGA) database. Then, the Wilcoxon signed-rank test was used to pick out the differentially expressed autophagy-associated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the potential roles and mechanisms of autophagy-associated genes in GC. Cox proportional hazard regression analysis and Lasso regression analysis were carried out to identify the overall survival (OS) related autophagy-associated genes, which were then collected to construct a predictive model. Kaplan-Meier method and receiver operating characteristic (ROC) curve were utilized to validate the accuracy of this model. Finally, a clinical nomogram was established by combining the clinical factors and autophagy-associated genes signature. Results: A total of 28 differentially expressed autophagy-associated genes were identified. GO and KEGG analyses revealed that several important cellular processes and signaling pathways were correlated with these genes. Through Cox regression and Lasso regression analyses, we identified 4 OS-related autophagy-associated genes (GRID2, ATG4D, GABARAPL2, and CXCR4) and constructed a prognosis prediction model. GC Patients with high-risk had a worse OS than those in low-risk group (5-year OS, 27.7% vs 38.3%; P=9.524e-07). The area under the ROC curve (AUC) of the prediction model was 0.67. The nomogram was demonstrated to perform better for predicting 3-year and 5-year survival possibility for GC patients with a concordance index (C-index) of 0.70 (95% CI: 0.65-0.72). The calibration curves also presented good concordance between nomogram-predicted survival and actual survival. Conclusions: We constructed and evaluated a survival model based on the autophagy-associated genes for GC patients, which may improve the prognosis prediction in GC.


2022 ◽  
Vol 11 ◽  
Author(s):  
Chunwang Huang ◽  
Wenxiao Yan ◽  
Shumei Zhang ◽  
Yanping Wu ◽  
Hantao Guo ◽  
...  

BackgroundGiven the difficulty of accurately determining the central lymph node metastasis (CLNM) status of patients with clinically node-negative (cN0) papillary thyroid carcinoma (PTC) before surgery, this study aims to combine real-time elastography (RTE) and conventional ultrasound (US) features with clinical features. The information is combined to construct and verify the nomogram to foresee the risk of CLNM in patients with cN0 PTC and to develop a network-based nomogram.MethodsFrom January 2018 to February 2020, 1,157 consecutive cases of cN0 PTC after thyroidectomy and central compartment neck dissection were retrospectively analyzed. The patients were indiscriminately allocated (2:1) to a training cohort (771 patients) and validation cohort (386 patients). Multivariate logistic regression analysis of US characteristics and clinical information in the training cohort was performed to screen for CLNM risk predictors. RTE data were included to construct prediction model 1 but were excluded when constructing model 2. DeLong’s test was used to select a forecast model with better receiver operator characteristic curve performance to establish a web-based nomogram. The clinical applicability, discrimination, and calibration of the preferable prediction model were assessed.ResultsMultivariate regression analysis showed that age, sex, tumor size, bilateral tumors, the number of tumor contacting surfaces, chronic lymphocytic thyroiditis, and RTE were risk predictors of CLNM in cN0 PTC patients, which constituted prediction model 1. Model 2 included the first six risk predictors. Comparison of the areas under the curves of the two models showed that model 1 had better prediction performance (training set 0.798 vs. 0.733, validation set 0.792 vs. 0.715, p &lt; 0.001) and good discrimination and calibration. RTE contributed significantly to the performance of the prediction model. Decision curve analysis showed that patients could obtain good net benefits with the application of model 1.ConclusionA noninvasive web-based nomogram combining US characteristics and clinical risk factors was developed in the research. RTE could improve the prediction accuracy of the model. The dynamic nomogram has good performance in predicting the probability of CLNM in cN0 PTC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bocheng Peng ◽  
Rui Min ◽  
Yiqin Liao ◽  
Aixi Yu

Objective. To determine the novel proposed nomogram model accuracy in the prediction of the lower-extremity amputations (LEA) risk in diabetic foot ulcer (DFU). Methods and Materials. In this retrospective study, data of 125 patients with diabetic foot ulcer who met the research criteria in Zhongnan Hospital of Wuhan University from January 2015 to December 2019 were collected by filling in the clinical investigation case report form. Firstly, univariate analysis was used to find the primary predictive factors of amputation in patients with diabetic foot ulcer. Secondly, single factor and multiple factor logistic regression analysis were employed to screen the independent influencing factors of amputation introducing the primary predictive factors selected from the univariate analysis. Thirdly, the independent influencing factors were applied to build a prediction model of amputation risk in patients with diabetic foot ulcer by using R4.3; then, the nomogram was established according to the selected variables visually. Finally, the performance of the prediction model was evaluated and verified by receiver working characteristic (ROC) curve, corrected calibration curve, and clinical decision curve. Results. 7 primary predictive factors were selected by univariate analysis from 21 variables, including the course of diabetes, peripheral angiopathy of diabetic (PAD), glycosylated hemoglobin A1c (HbA1c), white blood cells (WBC), albumin (ALB), blood uric acid (BUA), and fibrinogen (FIB); single factor logistic regression analysis showed that albumin was a protective factor for amputation in patients with diabetic foot ulcer, and the other six factors were risk factors. Multivariate logical regression analysis illustrated that only five factors (the course of diabetes, PAD, HbA1c, WBC, and FIB) were independent risk factors for amputation in patients with diabetic foot ulcer. According to the area under curve (AUC) of ROC was 0.876 and corrected calibration curve of the nomogram displayed good fitting ability, the model established by these 5 independent risk factors exhibited good ability to predict the risk of amputation. The decision analysis curve (DCA) indicated that the nomogram model was more practical and accurate when the risk threshold was between 6% and 91%. Conclusion. Our novel proposed nomogram showed that the course of diabetes, PAD, HbA1c, WBC, and FIB are the independent risk factors of amputation in patients with DFU. This prediction model was well developed and behaved a great accurate value for LEA so as to provide a useful tool for screening LEA risk and preventing DFU from developing into amputation.


2020 ◽  
Author(s):  
Wenting Wang ◽  
Zhijian Xu ◽  
Ning Wang ◽  
Ruyong Yao ◽  
Tao Qin ◽  
...  

Abstract BackgroundPancreatic cancer is one of the most common malignant tumors of the digestive tract, and it has a poor prognosis. Traditional methods are not effective to accurately assess the prognosis of patients with pancreatic cancer. Immunotherapy is a new promising approach for the treatment of pancreatic cancer; however, some patients do not respond well to immunotherapy, which may be related to tumor microenvironment regulation. In this study, we use gene expression database to mine important immune genes and establish a prognostic prediction model for pancreatic cancer patients. We hope to provide a feasible method to evaluate the prognosis of pancreatic cancer and provide valuable targets for pancreatic cancer immunotherapy.ResultsWe used univariate Cox proportional hazard regression analysis, the least absolute shrinkage and selection operator (LASSO), and multivariate COX regression analysis to screen 8 genes related to prognosis from the 314 immune-related genes, and used them to construct a new clinical prediction model in the TCGA pancreatic cancer cohort. Subsequently, we evaluated the prognostic value of the model. The Kaplan–Meier cumulative curve showed that patients with low risk scores survived significantly longer than patients with high risk scores. The area under the ROC curve (AUC value) of the risk score was 0.755.The univariate COX analysis showed that the risk score was significantly related to overall survival (OS) (HR = 1.406, 95% CI = 1.237 ~ 1.598, P <0.001), and multivariate analysis showed that the risk score was an independent prognostic factor (HR = 1.400 95% CI = 1.287 ~ 1.522, P <0.001). Correlation analysis found that immune genes are closely related to tumor immune microenvironment.ConclusionsBased on the TCGA-PAAD cohort, we identified immune-related markers with independent prognostic significance, validated, and analyzed their biological functions, to provide a feasible method for the prognosis of pancreatic cancer and provide potentially valuable targets for pancreatic cancer immunotherapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Li ◽  
Dongcen Ge ◽  
Shu-lan Sun

Abstract Background Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation. This study aims to investigate the potential correlation between ferroptosis and the prognosis of lung adenocarcinoma (LUAD). Methods RNA-seq data were collected from the LUAD dataset of The Cancer Genome Atlas (TCGA) database. Based on ferroptosis-related genes, differentially expressed genes (DEGs) between LUAD and paracancerous specimens were identified. The univariate Cox regression analysis was performed to screen key genes associated with the prognosis of LUAD. LUAD patients were divided into the training set and validation set. Then, we screened out key genes and built a prognostic prediction model involving 5 genes using the least absolute shrinkage and selection operator (LASSO) regression with tenfold cross-validation and the multivariate Cox regression analysis. After dividing LUAD patients based on the median level of risk score as cut-off value, the generated prognostic prediction model was validated in the validation set. Moreover, we analyzed the somatic mutations, and estimated the scores of immune infiltration in the high-risk and low-risk groups. Functional enrichment analysis of DEGs was performed as well. Results High-risk scores indicated the worse prognosis of LUAD. The maximum area under curve (AUC) of the training set and the validation set in this study was 0.7 and 0.69, respectively. Moreover, we integrated the age, gender, and tumor stage to construct the composite nomogram. The charts indicated that the AUC of LUAD cases with the survival time of 1, 3 and 5 years was 0.698, 0.71 and 0.73, respectively. In addition, the mutation frequency of LUAD patients in the high-risk group was significantly higher than that in the low-risk group. Simultaneously, DEGs were mainly enriched in ferroptosis-related pathways by analyzing the functional results. Conclusions This study constructs a novel LUAD prognosis prediction model involving 5 ferroptosis-related genes, which can be used as a promising tool for decision-making of clinical therapeutic strategies of LUAD.


Sign in / Sign up

Export Citation Format

Share Document