Removal of gaseous elemental mercury from simulated syngas over Fe2O3/TiO2 sorbents

Fuel ◽  
2021 ◽  
pp. 122614
Author(s):  
Xiangwen Xing ◽  
Xiaoyang Zhang ◽  
Jiyun Tang ◽  
Lin Cui ◽  
Yong Dong
Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 228
Author(s):  
Rute Cesário ◽  
Nelson J. O’Driscoll ◽  
Sara Justino ◽  
Claire E. Wilson ◽  
Carlos E. Monteiro ◽  
...  

In situ air concentrations of gaseous elemental mercury (Hg(0)) and vegetation–atmosphere fluxes were quantified in both high (Cala Norte, CN) and low-to-moderate (Alcochete, ALC) Hg-contaminated saltmarsh areas of the Tagus estuary colonized by plant species Halimione portulacoides (Hp) and Sarcocornia fruticosa (Sf). Atmospheric Hg(0) ranged between 1.08–18.15 ng m−3 in CN and 1.18–3.53 ng m−3 in ALC. In CN, most of the high Hg(0) levels occurred during nighttime, while the opposite was observed at ALC, suggesting that photoreduction was not driving the air Hg(0) concentrations at the contaminated site. Vegetation–air Hg(0) fluxes were low in ALC and ranged from −0.76 to 1.52 ng m−2 (leaf area) h−1 for Hp and from −0.40 to 1.28 ng m−2 (leaf area) h−1 for Sf. In CN, higher Hg fluxes were observed for both plants, ranging from −9.90 to 15.45 ng m−2 (leaf area) h−1 for Hp and from −8.93 to 12.58 ng m−2 (leaf area) h−1 for Sf. Mercury flux results at CN were considered less reliable due to large and fast variations in the ambient air concentrations of Hg(0), which may have been influenced by emissions from the nearby chlor-alkali plant, or historical contamination. Improved experimental setup, the influence of high local Hg concentrations and the seasonal activity of the plants must be considered when assessing vegetation–air Hg(0) fluxes in Hg-contaminated areas.


Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 172
Author(s):  
Laura Fantozzi ◽  
Nicoletta Guerrieri ◽  
Giovanni Manca ◽  
Arianna Orrù ◽  
Laura Marziali

We present the first assessment of atmospheric pollution by mercury (Hg) in an industrialized area located in the Ossola Valley (Italian Central Alps), in close proximity to the Toce River. The study area suffers from a level of Hg contamination due to a Hg cell chlor-alkali plant operating from 1915 to the end of 2017. We measured gaseous elemental Hg (GEM) levels by means of a portable Hg analyzer during car surveys between autumn 2018 and summer 2020. Moreover, we assessed the long-term dispersion pattern of atmospheric Hg by analyzing the total Hg concentration in samples of lichens collected in the Ossola Valley. High values of GEM concentrations (1112 ng m−3) up to three orders of magnitude higher than the typical terrestrial background concentration in the northern hemisphere were measured in the proximity of the chlor-alkali plant. Hg concentrations in lichens ranged from 142 ng g−1 at sampling sites located north of the chlor-alkali plant to 624 ng g−1 in lichens collected south of the chlor-alkali plant. A north-south gradient of Hg accumulation in lichens along the Ossola Valley channel was observed, highlighting that the area located south of the chlor-alkali plant is more exposed to the dispersion of Hg emitted into the atmosphere from the industrial site. Long-term studies on Hg emission and dispersion in the Ossola Valley are needed to better assess potential impact on ecosystems and human health.


Author(s):  
A. Navarro-Sempere ◽  
M. García ◽  
A. S. Rodrigues ◽  
P. V. Garcia ◽  
R. Camarinho ◽  
...  

AbstractMercury accumulation has been proposed as a toxic factor that causes neurodegenerative diseases. However, the hazardous health effects of gaseous elemental mercury exposure on the spinal cord in volcanic areas have not been reported previously in the literature. To evaluate the presence of volcanogenic inorganic mercury in the spinal cord, a study was carried out in São Miguel island (Azores, Portugal) by comparing the spinal cord of mice exposed chronically to an active volcanic environment (Furnas village) with individuals not exposed (Rabo de Peixe village), through the autometallographic silver enhancement histochemical method. Moreover, a morphometric and quantification analysis of the axons was carried out. Results exhibited mercury deposits at the lumbar level of the spinal cord in the specimens captured at the site with volcanic activity (Furnas village). A decrease in axon calibre and axonal atrophy was also observed in these specimens. Given that these are relevant hallmarks in the neurodegenerative pathologies, our results highlight the importance of the surveillance of the health of populations chronically exposed to active volcanic environments.


2008 ◽  
Vol 8 (23) ◽  
pp. 7165-7180 ◽  
Author(s):  
Z.-Q. Xie ◽  
R. Sander ◽  
U. Pöschl ◽  
F. Slemr

Abstract. Atmospheric mercury depletion events (AMDEs) during polar springtime are closely correlated with bromine-catalyzed tropospheric ozone depletion events (ODEs). To study gas- and aqueous-phase reaction kinetics and speciation of mercury during AMDEs, we have included mercury chemistry into the box model MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere), which enables dynamic simulation of bromine activation and ODEs. We found that the reaction of Hg with Br atoms dominates the loss of gaseous elemental mercury (GEM). To explain the experimentally observed synchronous depletion of GEM and O3, the reaction rate of Hg+BrO has to be much lower than that of Hg+Br. The synchronicity is best reproduced with rate coefficients at the lower limit of the literature values for both reactions, i.e. kHg+Br≈3×10−13 and kHg+BrO≤1×10−15 cm3 molecule−1 s−1, respectively. Throughout the simulated AMDEs, BrHgOBr was the most abundant reactive mercury species, both in the gas phase and in the aqueous phase. The aqueous-phase concentrations of BrHgOBr, HgBr2, and HgCl2 were several orders of magnitude larger than that of Hg(SO3)22−. Considering chlorine chemistry outside depletion events (i.e. without bromine activation), the concentration of total divalent mercury in sea-salt aerosol particles (mostly HgCl42−) was much higher than in dilute aqueous droplets (mostly Hg(SO3)22−), and did not exhibit a diurnal cycle (no correlation with HO2 radicals).


2008 ◽  
Vol 19 (7) ◽  
pp. 1290-1297 ◽  
Author(s):  
Marcelo D. Almeida ◽  
Rozane V. Marins ◽  
Heloisa H. M. Paraquetti ◽  
Luiz D. Lacerda

2017 ◽  
Author(s):  
Huiting Mao ◽  
Dolly Hall ◽  
Zhuyun Ye ◽  
Ying Zhou ◽  
Dirk Felton ◽  
...  

Abstract. The impact of large-scale circulation on urban gaseous elemental mercury (GEM) was investigated through analysis of 2008–2015 measurement data from an urban site in New York City (NYC), New York, USA. Distinct annual cycles were observed in 2009–2010 with mixing ratios in warm seasons (i.e. spring–summer) 10–20 ppqv (~ 10 %–25 %) higher than in cool seasons (i.e. fall–winter). This annual cycle was disrupted in 2011 by an anomalously strong influence of the North American trough in that warm season and was reproduced in 2014 with annual amplitude enhanced up to ~ 70 ppqv associated with a particularly strong Bermuda High. North American trough axis index (TAI) and intensity index (TII) were used to characterize the effect of the North American trough on NYC GEM especially in winter and summer. The intensity and position of the Bermuda High had a significant impact on GEM in warm seasons supported by a strong correlation (r reaching 0.96, p 


2016 ◽  
Author(s):  
Qianqian Hong ◽  
Zhouqing Xie ◽  
Cheng Liu ◽  
Feiyue Wang ◽  
Pinhua Xie ◽  
...  

Abstract. Long-term continuous measurements of speciated atmospheric mercury were conducted at Hefei, a mid-latitude inland city in east central China, from July 2013 to June 2014. The mean concentrations (± standard deviation) of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and particle-bound mercury (PBM) were 3.95 ± 1.93 ng m−3, 2.49 ± 2.41 pg m−3 and 23.3 ± 90.8 pg m−3, respectively, during non-haze days, and 4.74 ± 1.62 ng m−3, 4.32 ± 8.36 pg m−3 and 60.2 ± 131.4 pg m−3, respectively, during haze days. Potential source contribution function (PSCF) analysis suggested that the atmospheric mercury pollution during haze days was caused primarily by local mercury emissions, instead of via long-range mercury transport. In addition, the disadvantageous diffussion during haze days will also enhance the level of atmospheric mercury. Compared to the GEM and RGM, change in PBM was more sensitive to the haze pollution. The mean PBM concentration during haze days was 2.5 times that during non-haze days due to elevated concentrations of particulate matter. A remarkable seasonal trend in PBM was observed with concentration decreasing in the following order in response to the frequency of haze days: autumn, winter, spring, summer. A distinct diurnal relationship was found between GEM and RGM during haze days, with the peak values of RGM coinciding with the decline in GEM. Using HgOH as an intermediate product during GEM oxidation, our results suggest that NO2 aggregation with HgOH could explain the enhanced production of RGM during the daytime in haze days. Increasing level of NOx will potentially accelerate the oxidation of GEM despite the decrease of solar radiation.


Sign in / Sign up

Export Citation Format

Share Document