Effect of hydrothermal carbonisation temperature on the ignition properties of grape marc hydrochar fuels

Fuel ◽  
2021 ◽  
pp. 122668
Author(s):  
Duong Nguyen ◽  
Wanxia Zhao ◽  
Mikko Mäkelä ◽  
Zeyad T. Alwahabi ◽  
Chi Wai Kwong
Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2003
Author(s):  
Paul Muñoz ◽  
Karla Pérez ◽  
Alfredo Cassano ◽  
René Ruby-Figueroa

Wastewaters and by-products generated in the winemaking process are important and inexpensive sources of value-added compounds that can be potentially reused for the development of new products of commercial interest (i.e., functional foods). This research was undertaken in order to evaluate the potential of nanofiltration (NF) membranes in the recovery of anthocyanins and monosaccharides from a clarified Carménère grape marc obtained through a combination of ultrasound-assisted extraction and microfiltration. Three different flat-sheet nanofiltration (NF) membranes, covering the range of molecular weight cut-off (MWCO) from 150 to 800 Da, were evaluated for their productivity as well as for their rejection towards anthocyanins (malvidin-3-O-glucoside, malvidin 3-(acetyl)-glucoside, and malvidin 3-(coumaroyl)-glucoside) and sugars (glucose and fructose) in selected operating conditions. The selected membranes showed differences in their performance in terms of permeate flux and rejection of target compounds. The NFX membrane, with the lowest MWCO (150–300 Da), showed a lower flux decay in comparison to the other investigated membranes. All the membranes showed rejection higher than 99.42% for the quantified anthocyanins. Regarding sugars rejection, the NFX membrane showed the highest rejection for glucose and fructose (100 and 92.60%, respectively), whereas the NFW membrane (MWCO 300–500 Da) was the one with the lowest rejection for these compounds (80.57 and 71.62%, respectively). As a general trend, the tested membranes did not show a preferential rejection of anthocyanins over sugars. Therefore, all tested membranes were suitable for concentration purposes.


2021 ◽  
Vol 138 (25) ◽  
pp. 50605
Author(s):  
Zoran Zujovic ◽  
Sudip Ray ◽  
Charlotte Vandermeer ◽  
Graham A. Bowmaker ◽  
Paul A. Kilmartin

Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1379 ◽  
Author(s):  
Daniele Basso ◽  
Elsa Weiss-Hortala ◽  
Francesco Patuzzi ◽  
Marco Baratieri ◽  
Luca Fiori

2014 ◽  
Vol 97 (8) ◽  
pp. 5073-5087 ◽  
Author(s):  
P.J. Moate ◽  
S.R.O. Williams ◽  
V.A. Torok ◽  
M.C. Hannah ◽  
B.E. Ribaux ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 168 ◽  
Author(s):  
Lorenzo Favaro ◽  
Marina Basaglia ◽  
Alberto Trento ◽  
Eugéne Van Rensburg ◽  
Maria García-Aparicio ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 469-470
Author(s):  
Sandra Suescun-Ospina ◽  
Nelson Vera ◽  
Rita Astudillo ◽  
Jorge Avila-Stagno

Abstract País Grape (Vitis vinifera L.) is an ancestral variety used in Chilean wine industry. It has a higher content of proanthocyanidins than commercial varieties such as Carmenère or Pinot Noir, resulting in País grape marc (PGM) with high contents of condensed tannins. As such, PGM inclusion in ruminant diets would have the potential to reduce enteric methane (CH4) emissions and decrease urinary N excretion. The objective of this study was to evaluate the effects of substitution of mixed hay (MH) with PGM in a high concentrate diet [65% dry matter (DM)] on in vitro dry matter disappearance (IVDMD), ruminal fermentation parameters, gas and CH4 production. Treatments were: T1 (Control) = 20% MH, 15% corn silage, 65% concentrate; T2 = 10% MH, 10% PGM, 15% corn silage, 65% concentrate; T3 = 20% PGM, 15% corn silage, 65% concentrate. The study was a randomized complete design with 3 treatment and 3 replicates, incubated for 24 h at 39º C. Data were compared by Tukey test and polynomial contrasts. There was a linear reduction in NH3-N (P = 0.001) as dietary PGM increased. Inclusion of PGM reduced NH3-N by 50% when added at 10% DM, and 71.7% at 20% DM. However, there also was 4% reduction in IVDMD (P ≤ 0.001) and gas production (P = 0.012) in the 20% GM diet. There were no treatment effects (P ≥ 0.05) on CH4 production or yield. Fermentation efficiency determined by the partition factor increased linearly (P = 0.013) as PGM inclusion increased, suggesting that it increases organic matter to be degraded. Based on this study it could be concluded that PGM is an alternative source of fiber for ruminants on concentrate diets, as it can result in improved rumen fermentation efficiency and a substantial reduction in ruminal ammonia nitrogen concentration (NH3-N).


2019 ◽  
Vol 240 ◽  
pp. 105-113 ◽  
Author(s):  
Débora Tamires Vitor Pereira ◽  
Adriana Gadioli Tarone ◽  
Cinthia Baú Betim Cazarin ◽  
Gerardo Fernández Barbero ◽  
Julian Martínez

Sign in / Sign up

Export Citation Format

Share Document