scholarly journals Rainfall homogenizes while fruiting increases diversity of spore deposition in Mediterranean conditions

2019 ◽  
Vol 41 ◽  
pp. 279-288 ◽  
Author(s):  
Carles Castaño ◽  
José Antonio Bonet ◽  
Jonàs Oliva ◽  
Gemma Farré ◽  
Juan Martínez de Aragón ◽  
...  
2021 ◽  
Vol 13 (6) ◽  
pp. 3439
Author(s):  
Diana Turrión ◽  
Luna Morcillo ◽  
José Antonio Alloza ◽  
Alberto Vilagrosa

Open-pit mining results in profound modifications at different environmental scales that may persist for very long time periods, or even indefinitely. Considerable research efforts in mine reclamation strategies have been made, although reclamation failures are still common. In dry climates, such as in the Mediterranean Basin, successful actions may depend on features related to proper species selection and restoration techniques, which may substantially contribute to provide substrate stability and facilitate the regeneration of the main ecological processes. In this context, we developed the TECMINE case-study aimed to evaluate the feasibility and suitability of innovative restoration practices applied to clay-mine reclamation under Mediterranean conditions. The restoration strategy was designed at the landscape level with two main approaches: the recovery of natural geomorphology shapes and ecological restoration, including vegetation recovery and soil quality, based on proper reference ecosystems. After the geomorphological land remodeling, a combination of several innovative restoration techniques was implemented to reclaim plant communities and ecosystem functioning. These techniques involved: (i) accurate species selection according to microhabitat characteristics; (ii) high-quality plant production; (iii) surface remodeling to improve substrate stabilization; and (iv) implementing rainfall collection to enhance resources availability, soil fertility improvement and the amelioration of abiotic conditions for seedlings. Finally, we developed a monitoring program to assess the success of the implemented restoration techniques over time. The application of these innovative techniques has reported interesting results and represents a step forward in the improvement of mine restoration under Mediterranean climate.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 381
Author(s):  
J. Julio Camarero ◽  
Cristina Valeriano ◽  
Antonio Gazol ◽  
Michele Colangelo ◽  
Raúl Sánchez-Salguero

Background and Objectives—Coexisting tree and shrub species will have to withstand more arid conditions as temperatures keep rising in the Mediterranean Basin. However, we still lack reliable assessments on how climate and drought affect the radial growth of tree and shrub species at intra- and interannual time scales under semi-arid Mediterranean conditions. Materials and Methods—We investigated the growth responses to climate of four co-occurring gymnosperms inhabiting semi-arid Mediterranean sites in northeastern Spain: two tree species (Aleppo pine, Pinus halepensis Mill.; Spanish juniper, Juniperus thurifera L.) and two shrubs (Phoenicean juniper, Juniperus phoenicea L.; Ephedra nebrodensis Tineo ex Guss.). First, we quantified the intra-annual radial-growth rates of the four species by periodically sampling wood samples during one growing season. Second, we quantified the climate–growth relationships at an interannual scale at two sites with different soil water availability by using dendrochronology. Third, we simulated growth responses to temperature and soil moisture using the forward, process-based Vaganov‒Shashkin (VS-Lite) growth model to disentangle the main climatic drivers of growth. Results—The growth of all species peaked in spring to early summer (May–June). The pine and junipers grew after the dry summer, i.e., they showed a bimodal growth pattern. Prior wet winter conditions leading to high soil moisture before cambium reactivation in spring enhanced the growth of P. halepensis at dry sites, whereas the growth of both junipers and Ephedra depended more on high spring–summer soil moisture. The VS-Lite model identified these different influences of soil moisture on growth in tree and shrub species. Conclusions—Our approach (i) revealed contrasting growth dynamics of co-existing tree and shrub species under semi-arid Mediterranean conditions and (ii) provided novel insights on different responses as a function of growth habits in similar drought-prone regions.


2017 ◽  
Vol 41 (5) ◽  
pp. 627-635 ◽  
Author(s):  
M. Arritokieta Ortuzar-Iragorri ◽  
Ana Aizpurua ◽  
Ander Castellón ◽  
Asier Alonso ◽  
José M. Estavillo ◽  
...  

2008 ◽  
Vol 71 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Patricia López-Mancisidor ◽  
Gregoria Carbonell ◽  
Ana Marina ◽  
Carlos Fernández ◽  
José V. Tarazona

2007 ◽  
Vol 94 (1-3) ◽  
pp. 11-21 ◽  
Author(s):  
Angel Utset ◽  
Herminio Velicia ◽  
Blanca del Río ◽  
Rodrigo Morillo ◽  
José Antonio Centeno ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 544
Author(s):  
Jaume Lordan ◽  
Lourdes Zazurca ◽  
Mercè Rovira ◽  
Laura Torguet ◽  
Ignasi Batlle ◽  
...  

Almond is an important tree nut crop worldwide, and planted areas have been increasing year after year. While self-fertility is one of the key factors when it comes to improved almond productivity of new cultivars, yield is also affected by the number of flowers produced, pollination, fruit set, fruit drop, and fruit weight. Almond fruit drop patterns of 20 Mediterranean almond cultivars were studied over three years. In addition, fruit drop patterns of two scion cultivars ‘Marinada’ and ‘Vairo’ budded onto eight to 10 different rootstocks managed with three different pruning strategies were studied for two years. Cumulative flower and fruit drop ranged from 50% to 90% among cultivars and treatments, and there were up to four fruit drop events during the growing season, the main one occurring from 20–60 days from full bloom (DFFB). Subsequent drops were at 100 DFFB, 120–140 DFFB, and the last one at 160–180 DFFB. The later drops were less apparent. In general, about half of the cumulative drop was comprised of buds and flowers, and the remaining percentage was fruit that dropped 20 or more days after full bloom. Furthermore, different fruit drop patterns were observed depending on the cultivar. For late- and extra-late flowering cultivars, cumulative fruit drop began to decrease earlier, with most of the drops occurred already at full bloom, whereas the opposite was observed for the early flowering cultivars. Rootstocks also had an important effect on the fruit drop pattern, with different effects depending on the scion cultivar. Tree management, such as type of pruning, also had an important effect on the rate of fruit drop and cumulative drop. Therefore, each combination of cultivar × rootstock × pruning type will require different strategies in order to reduce the fruit drop and optimize crop loads.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 653
Author(s):  
Lidia Aparicio-Durán ◽  
Aurea Hervalejo-García ◽  
Rocío Calero-Velázquez ◽  
Juan M. Arjona-López ◽  
Francisco J. Arenas-Arenas

Salinity is a major agriculture problem for citrus in the Mediterranean basin, which is a major global producer region. Citrus crops are also threatened by emerging diseases such as Huanglongbing (HLB). The use of different rootstocks increases the variability of citrus plant material in orchards, thus preventing extensive damage caused by abiotic and/or biotic diseases. In this work, we have evaluated the salinity response of five citrus rootstocks (US942, US897, X639, Forner Alcaide No. 5 and Carrizo citrange) some of which have known tolerance to HLB, under Mediterranean conditions. Four treatments with different salt concentrations (0, 25, 50 and 75 mM of NaCl) were applied by watering the plants three times per week for eleven weeks. Chlorophyll index (SPAD), growth and plant symptom parameters were recorded on a biweekly basis. At the end of the trial, roots, stem and leaves biomass and plant mineral content were obtained. The increasing concentration of NaCl resulted in visible leave damage symptoms for all citrus rootstocks assayed, hindering plant growth in all citrus rootstocks assayed, except for X639. The highest concentration of toxic ions in leaves was detected in Carrizo citrange and US897 for Cl−, while the lowest concentration of Na+ was obtained in X639. These results provide growers with information about the sensitivity to salinity of different citrus rootstocks.


Sign in / Sign up

Export Citation Format

Share Document