CFD Investigation of helium gas flow in sphere packed (Pebble bed) in a rectangular canister using OpenFOAM

2021 ◽  
Vol 172 ◽  
pp. 112858
Author(s):  
Pratyush Kumar ◽  
Abhishek Thakur ◽  
Sandip K. Saha ◽  
Atul Sharma ◽  
Deepak Sharma ◽  
...  
Keyword(s):  
Gas Flow ◽  
2021 ◽  
Author(s):  
P. Y. Tan ◽  
O. H. Chin ◽  
R. Anpalagan ◽  
Y. T. Lau ◽  
H. C. Lee

2012 ◽  
Vol 2012.17 (0) ◽  
pp. 265-266
Author(s):  
Yohji SEKI ◽  
Akira YOSHIKAWA ◽  
Hisashi TANIGAWA ◽  
Takanori HIROSE ◽  
Koichiro EZATO ◽  
...  

Author(s):  
Maria Elizabeth Scari ◽  
Antonella Lombardi Costa ◽  
Claubia Pereira ◽  
Clarysson Alberto Mello da Silva ◽  
Maria Auxiliadora Fortini Veloso

Several efforts have been considered in the development of the modular High Temperature Gas cooled Reactor (HTGR) planned to be a safe and efficient nuclear energy source for the production of electricity and industrial applications. In this work, the RELAP5-3D thermal hydraulic code was used to simulate the steady state behavior of the 10 MW pebble bed high temperature gas cooled reactor (HTR-10), designed, constructed and operated by the Institute of Nuclear and New Energy Technology (INET), in China. The reactor core is cooled by helium gas. In the simulation, results of temperature distribution within the pebble bed, inlet and outlet coolant temperatures, coolant mass flow, and others parameters have been compared with the data available in a benchmark document published by the International Atomic Energy Agency (IAEA) in 2013. This initial study demonstrates that the RELAP5-3D model is capable to reproduce the thermal behavior of the HTR-10.


Author(s):  
Wei-hua Wang ◽  
Zhi-qiang Zhu ◽  
Qun-ying Huang ◽  
Xin-zhen Ling ◽  
Jin-ling Li

Mini-TBM will be tested in chinese LiPb experimenttal loop Dragon-IV to validate the thermal-hydraulic effect of DFLL-TBM, such as dual-flow fields heat transfer, temperature fields, velocity fields, flux distribution of liquid lithium lead and helium gas. It is difficult to measure the detailed dual-flow fields of liquid metal LiPb and helium gas in mini-TBM. Three dimensions numerical analysis of the LiPb and helium gas flow and heat transfer in Mini-Test Blanket Module (TBM) therefore has been carried out using the CFD code FLUENT. The detailed dual-flow fields, which include temperature, velocity, pressure and heat transfer of liquid LiPb and helium gas, are presented to support for the test of mini-TBM, and to supply more robust database and make a significant joint contribution to the future TBM testing in EAST and ITER, and also optimize and improve the design of DFLL-TBM system for ITER.


Author(s):  
Carel F. Viljoen ◽  
Sonat Sen ◽  
Frederik Reitsma ◽  
Onno Ubbink ◽  
Peter Pohl ◽  
...  

The AVR (Arbeitsgemeinschaft Versuchsreaktor) is a pebble bed type helium cooled graphite moderated high temperature reactor that operated in Germany for 21 years and was closed down in December 1988 [1]. The AVR melt-wire experiments [2], where graphite spheres with melt-wires of different melting temperatures were introduced into the core, indicate that measured pebble temperatures significantly exceeded temperatures calculated with the models used at the time [3]. These discrepancies are often attributed to the special design features of the AVR, in particular the control rod noses protruding into the core, and to inherent features of the pebble bed reactor. In order to reduce the uncertainty in design and safety calculations the PBMR Company is re-evaluating the AVR melt-wire experiments with updated models and tools. 3-D neutronics thermal-hydraulics analyses are performed utilizing a coupled VSOP99-STAR-CD calculation. In the coupled system VSOP99 [4] provides power profiles on a geometrical mesh to STAR-CD [5] while STAR-CD provides the fuel, moderator and solid structure temperatures to VSOP99. The different fuel histories and flow variations can be modelled with VSOP99 (although this is not yet included in the model) while the computational fluid dynamics (CFD) code, STAR-CD, adds higher-order thermal and gas flow modelling capabilities. This coupling therefore ensures that the correct thermal feedback to the neutronics is included. Of the many possible explanations for the higher-than-expected melt-wire temperatures, flow bypassing the pebble core was identified as potentially the largest contributor and was thus selected as the first topic to study. This paper reports the bounding effects of bypass flows on the gas temperatures in the top of the reactor. It also presents preliminary comparisons between measured temperatures above the core ceiling structure and calculated temperatures. Results to date confirm the importance of correctly modelling the bypass flows. Plans on future model improvements and other effects to be studied with the coupled VSOP99-STAR-CD tool are also included.


2001 ◽  
Vol 34 (1) ◽  
pp. 76-79 ◽  
Author(s):  
Lynn Ribaud ◽  
Guang Wu ◽  
Yuegang Zhang ◽  
Philip Coppens

As the combination of high-intensity synchrotron sources and area detectors allows collection of large data sets in a much shorter time span than previously possible, the use of open helium gas-flow systems is much facilitated. A flow system installed at the SUNY X3 synchrotron beamline at the National Synchrotron Light Source has been used for collection of a number of large data sets at a temperature of ∼16 K. Instability problems encountered when using a helium cryostat for three-dimensional data collection are eliminated. Details of the equipment, its temperature calibration and a typical result are described.


2013 ◽  
Vol 26 (4) ◽  
pp. 235-244 ◽  
Author(s):  
Yonghoon Lee ◽  
Daewoong Choi ◽  
Yongdeuk Gong ◽  
Sang-Ho Nam ◽  
Changwoon Nah

Sign in / Sign up

Export Citation Format

Share Document