The influence of the carbon precursor, carbon feed rate and helium gas flow rate on the synthesis of fullerenes from carbon powder in an entrained flow 3-phase AC plasma reactor operating at atmospheric pressure

Carbon ◽  
2012 ◽  
Vol 50 (12) ◽  
pp. 4524-4533 ◽  
Author(s):  
L. Fulcheri ◽  
F. Fabry ◽  
V. Rohani
2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


2015 ◽  
Vol 3 (15) ◽  
pp. 3530-3535 ◽  
Author(s):  
Jing Li ◽  
Xuan-Yun Wang ◽  
Xing-Rui Liu ◽  
Zhi Jin ◽  
Dong Wang ◽  
...  

By mildly oxidizing Cu foil and slowing down the gas flow rate, centimeter-sized single-crystalline graphene was grown on Cu at atmospheric pressure.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Nor Faraliana Shazwani Nor Azmi ◽  
Abdullahi Mohammed Evuti ◽  
Mohd Ariffin Abu Hassan ◽  
R. K. Raja Ibrahim

Non Thermal Plasma (NTP) is an emerging method used for the decomposition of volatile organic compounds (VOCs). This research focuses on the optimization of NTP reactor performance for decomposition of xylene from wastewater using response surface methodology (RSM) by operating the NTP reactor at applied voltage of 12-15 kV, discharge gap of 2.0-3.0 cm and gas flow rate of 2.0-5.0 L/min. An optimum xylene removal efficiency of 81.98% was obtained at applied voltage 15kV, discharge gap 2.09cm and gas flow rate at 2.36 L/min. The experimental removal efficiencies and model predictions were in close agreement with an error of 0.63%. 


2006 ◽  
Vol 515 (4) ◽  
pp. 1970-1975 ◽  
Author(s):  
W. Chen ◽  
X. Lu ◽  
Q. Yang ◽  
C. Xiao ◽  
R. Sammynaiken ◽  
...  

1997 ◽  
Vol 470 ◽  
Author(s):  
G. C. Xing ◽  
D. Lopes ◽  
G. E. Miner

ABSTRACTIn this paper, we report the study of rapid thermal oxidation of silicon in N2O ambient using the Applied Materials RTP Centura rapid thermal processor, and N2O oxide thickness and compositional uniformities with respect to gas flow rate and wafer rotation speed as well as other process parameters. It was found that N2O oxide uniformity is strongly dependent on gas flow rate and wafer rotation speed in addition to process pressure. With optimized setting of the process parameters, excellent oxidation uniformities (one sigma < 1%) were obtained at atmospheric pressure N2O ambient. Nitrogen concentrations of such uniform oxides grown at 1050°C atmospheric pressure N2O oxidation processes were 1.7% for a 40Å oxide and 2.5% for a 60Å oxide, respectively, as characterized by SIMS analysis.


2018 ◽  
Vol 25 (9) ◽  
pp. 093508 ◽  
Author(s):  
Jinsong Kang ◽  
Muyang Qian ◽  
Gui Li ◽  
Sanqiu Liu ◽  
Chunsheng Ren ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 5907-5911 ◽  
Author(s):  
Xue Chen Li ◽  
Ning Yuan ◽  
Peng Ying Jia

Appling a high voltage to the dielectric barrier discharge device in a coaxial geometry in flowing argon, a uniform plasma plume is generated at one atmospheric pressure. The waveforms of discharge current and the applied voltage are investigated and results indicate that both the intensity and duration width of the discharge current pulse increase with increasing the applied voltage. The gas temperature of the plasma plume is investigated by using an infrared thermometer. The gas temperature of the plasma plume are functions of gas flow rate, peak value and the frequency of the applied voltage. Results show that the gas temperature increases with increasing the applied voltage or its frequency, while it decreases with increasing the gas flow rate. A qualitative explanation is given for the variance of gas temperature as functions of the experimental parameters by analyzing the waveforms of the discharge current and the applied voltage.


Sign in / Sign up

Export Citation Format

Share Document