Genetic diversity and genetic structure of Acer monspessulanum L. across Zagros forests of Iran using molecular markers

Gene ◽  
2021 ◽  
Vol 769 ◽  
pp. 145245
Author(s):  
Behnaz Motahari ◽  
Naghi Shabanian ◽  
Mohammad-Shafie Rahmani ◽  
Farshad Mohammad-Hasani
2010 ◽  
Vol 46 (Special Issue) ◽  
pp. S54-S56 ◽  
Author(s):  
J. Cunha ◽  
M. Teixeira Santos ◽  
J. Brazăo ◽  
L.C. Carneiro ◽  
M. Veloso ◽  
...  

To assess the different origins of Portuguese grapevine varieties, we used six nuclear and four chloroplastidal microsatellites as molecular markers, in order to compare the genetic structure of native wild-vines with native grapevine varieties. Both native subspecies have a great diversity, and a high interrelationship across the six nuclear microsatellites. Although identical numbers of alleles were found in each population, their distribution was different in the <I>vinifera </I>and <I>sylvestris </I>subspecies. Portuguese wild-vines have only chlorotypes A and B; A being the most frequent. The fifty-seven analysed Portuguese varieties have chlorotypes A, B, C, and D. The most frequent was the chlorotype A (75%), followed by D (21%). The results obtained reinforced the idea of Western Europe as having been one of the domestication centres for the grapevine, with contributions from the Eastern European gene pool. The observed genetic structure is a starting point from which to clarify the high number of native cultivars found in Portugal, and reinforces their probable origin in the Iberian Peninsula.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 66 ◽  
Author(s):  
Javier Monzón

Previous genetic studies of eastern coyotes (Canis latrans) are based on one of two strategies: sampling many individuals using one or very few molecular markers, or sampling very few individuals using many genomic markers. Thus, a regional analysis of genetic diversity and population structure in eastern coyotes using many samples and several molecular markers is lacking. I evaluated genetic diversity and population structure in 385 northeastern coyotes using 16 common single nucleotide polymorphisms (SNPs). A region-wide analysis of population structure revealed three primary genetic populations, but these do not correspond to the same three subdivisions inferred in a previous analysis of mitochondrial DNA sequences. More focused geographic analyses of population structure indicated that ample genetic structure occurs in coyotes from an intermediate contact zone where two range expansion fronts meet. These results demonstrate that genotyping several highly heterozygous SNPs in a large, geographically dense sample is an effective way to detect cryptic population genetic structure. The importance of SNPs in studies of population and wildlife genomics is rapidly increasing; this study adds to the growing body of recent literature that demonstrates the utility of SNPs ascertained from a model organism for evolutionary inference in closely related species.


2010 ◽  
Vol 10 (4) ◽  
pp. 298-304 ◽  
Author(s):  
Tesfahun Alemu Setotaw ◽  
Eveline Teixeira Caixeta ◽  
Guilherme Ferreira Pena ◽  
Eunize Maciel Zambolim ◽  
Antonio Alves Pereira ◽  
...  

AFLP, RAPD and SSR molecular markers were used to study the genetic diversity and genetic structure of the Híbrido de Timor germplasm. The principal coordinate analysis, UPGMA cluster analysis based on genetic dissimilarity of Jaccard, Bayesian model-based cluster analysis, percentage of polymorphic loci, Shannon's information index and Nei gene diversity were employed to assess the genetic diversity. The analyses demonstrated a high genetic diversity among Híbrido de Timor accessions. UPGMA and Bayesian cluster analyses grouped the accessions into three clusters. The genetic structure of Híbrido de Timor is reported. The management of Híbrido de Timor germplasm variability and its potential use in breeding programs are discussed.


2004 ◽  
Vol 53 (1-6) ◽  
pp. 93-99 ◽  
Author(s):  
N. Wahid ◽  
S. C. González-Martínez ◽  
I. El Hadrami ◽  
A. Boulli

Abstract The estimation of genetic diversity using molecular markers is a major component of genetic conservation programs. In its range, Maritime pine has been extensively studied using different molecular markers and quantitative traits. However, Moroccan populations have been usually represented only by a few typical locations in the Middle Atlas (e.g., Tamjout). To describe the genetic structure and variability of maritime pine in Morocco, eleven populations of this species comprising all major geographic regions (Rif, Middle Atlas and High Atlas) were studied using allozyme markers. A total of 471 samples were analyzed using polyacrylamide gel electrophoresis (PAGE) of eight enzyme systems encoded by 19 loci. Genetic variation was lower in Morocco than in other ranges of the species. However, genetic diversity was structured and a high differentiation among populations (θ = 10.44%) and a moderate correlation between genetic and geographic distances were found (0.350). Three main groups of populations can be distinguished based on genetic distances: (i) Mediterranean Coastal, (ii) Occidental Rif and Middle Atlas and (iii) High Atlas. The populations from Middle Atlas presented the lowest values of allelic richness and gene diversity whereas the populations from Rif showed a considerable amount of genetic variability. Human impact and isolation are major factors explaining population genetic structure of maritime pine in Morocco. Overexploitation of the forest by intensive cattle grazing and land speculation are suggested to be active mechanisms currently deploying the genetic resources of this species.


2017 ◽  
pp. 85
Author(s):  
Adriana Otero-Arnaiz ◽  
Marlene De la Cruz ◽  
Ken Oyama

In this paper a review of RAPDs (Random Amplified Polymorphic DNA) as molecular markers is presented. This molecular marker has been used to genetic mapping, population genetic structure, genetic identification, intra and interspecific variation, reconstructing phylogenies and conservation biology. In general, RAPDs have been useful to estimate genetic diversity, genetic identification of taxa, clones, varieties and hybrids. However, their use in Systematic has been questioned due to the difficulties in the determination of identity, homologies and independence of characters. Methods of analyses used to estimate genetic diversity are briefly described. Finally, some recent advances and new technics based on PCR are presented.


2014 ◽  
Vol 21 (5) ◽  
pp. 601-609
Author(s):  
Wang Deyun ◽  
Peng Jie ◽  
Chen Yajing ◽  
Lü Guosheng ◽  
Zhang Xiaoping ◽  
...  

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 492f-493
Author(s):  
Roberto F. Vieira ◽  
James E. Simon ◽  
Peter Goldsbrough ◽  
Antonio Figueira

Essential oils extracted from basil (Ocimum spp.) by steam distillation are used to flavor foods, oral products, in fragrances, and in traditional medicines. The genus Ocimum contains around 30 species native to the tropics and subtropics, with some species naturalized and/or cultivated in temperate areas. Interand intraspecific hybridization have created significant confusion in the botanical systematics of this genus. Taxonomy of basil (O. basilicum) is also complicated by the existence of numerous varieties, cultivars, and chemotypes within the species that do not differ significantly in morphology. In this study we are using RAPD markers and volatile oil composition to characterize the genetic diversity among the most economically important Ocimum species. We hypothesize that the genetic similarity revealed by molecular markers will more accurately reflect the morphological and chemical differences in Ocimum than essential oil composition per se. Preliminary research using five Ocimum species, four undetermined species, and eight varieties of O. basilicum (a total of 19 accessions) generated 107 polymorphic fragments amplified with 19 primers. RAPDs are able to discriminate between Ocimum species, but show a high degree of similarity between O. basilicum varieties. The genetic distance between nine species and among 55 accessions within the species O. americanum, O. basilicum, O. campechianum, O. × citriodorum, O. gratissimum, O. kilimandscharium, O. minimum, O. selloi, and O. tenuiflorum will be analyzed by matrix of similarity and compared to the volatile oil profile. This research will for the first time apply molecular markers to characterize the genetic diversity of Ocimum associate with volatile oil constituent.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 119
Author(s):  
Adrianna Kilikowska ◽  
Monika Mioduchowska ◽  
Anna Wysocka ◽  
Agnieszka Kaczmarczyk-Ziemba ◽  
Joanna Rychlińska ◽  
...  

Mussels of the family Unionidae are important components of freshwater ecosystems. Alarmingly, the International Union for Conservation of Nature and Natural Resources Red List of Threatened Species identifies almost 200 unionid species as extinct, endangered, or threatened. Their decline is the result of human impact on freshwater habitats, and the decrease of host fish populations. The Thick Shelled River Mussel Unio crassus Philipsson, 1788 is one of the examples that has been reported to show a dramatic decline of populations. Hierarchical organization of riverine systems is supposed to reflect the genetic structure of populations inhabiting them. The main goal of this study was an assessment of the U. crassus genetic diversity in river ecosystems using hierarchical analysis. Different molecular markers, the nuclear ribosomal internal transcribed spacer ITS region, and mitochondrial DNA genes (cox1 and ndh1), were used to examine the distribution of U. crassus among-population genetic variation at multiple spatial scales (within rivers, among rivers within drainages, and between drainages of the Neman and Vistula rivers). We found high genetic structure between both drainages suggesting that in the case of the analyzed U. crassus populations we were dealing with at least two different genetic units. Only about 4% of the mtDNA variation was due to differences among populations within drainages. However, comparison of population differentiation within drainages for mtDNA also showed some genetic structure among populations within the Vistula drainage. Only one haplotype was shared among all Polish populations whereas the remainder were unique for each population despite the hydrological connection. Interestingly, some haplotypes were present in both drainages. In the case of U. crassus populations under study, the Mantel test revealed a relatively strong relationship between genetic and geographical distances. However, in detail, the pattern of genetic diversity seems to be much more complicated. Therefore, we suggest that the observed pattern of U. crassus genetic diversity distribution is shaped by both historical and current factors i.e. different routes of post glacial colonization and history of drainage systems, historical gene flow, and more recent habitat fragmentation due to anthropogenic factors.


Sign in / Sign up

Export Citation Format

Share Document