On Einstein-type contact metric manifolds

Author(s):  
Dhriti Sundar Patra ◽  
Amalendu Ghosh
Axioms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 8
Author(s):  
Giulia Dileo

We introduce a new class of almost 3-contact metric manifolds, called 3-(0,δ)-Sasaki manifolds. We show fundamental geometric properties of these manifolds, analyzing analogies and differences with the known classes of 3-(α,δ)-Sasaki (α≠0) and 3-δ-cosymplectic manifolds.


2019 ◽  
Vol 16 (03) ◽  
pp. 1950039 ◽  
Author(s):  
V. Venkatesha ◽  
Devaraja Mallesha Naik

If [Formula: see text] is a 3-dimensional contact metric manifold such that [Formula: see text] which admits a Yamabe soliton [Formula: see text] with the flow vector field [Formula: see text] pointwise collinear with the Reeb vector field [Formula: see text], then we show that the scalar curvature is constant and the manifold is Sasakian. Moreover, we prove that if [Formula: see text] is endowed with a Yamabe soliton [Formula: see text], then either [Formula: see text] is flat or it has constant scalar curvature and the flow vector field [Formula: see text] is Killing. Furthermore, we show that if [Formula: see text] is non-flat, then either [Formula: see text] is a Sasakian manifold of constant curvature [Formula: see text] or [Formula: see text] is an infinitesimal automorphism of the contact metric structure on [Formula: see text].


2009 ◽  
pp. 45-48 ◽  
Author(s):  
O. Latkovic ◽  
M. Zboril ◽  
G. Djurasevic

We present the analysis of V and R light curves of the late type contact binary V523 Cas for the season of 2006. These observations make part of the monitoring program aimed at studying the long-term light curve variability in this system. Our results confirm that the system is in an over contact configuration, and include a bright spot in the neck region of the cooler and larger primary. We compare these results with the previous solution, obtained for the season 2005 dataset and discuss the differences.


2012 ◽  
Vol 497 ◽  
pp. 137-141 ◽  
Author(s):  
Wen Jian Lu ◽  
Yuki Shimizu ◽  
Wei Gao

A thermal-type contact sensor was proposed to detect small defects, the heights of which are less than 16 nm, on the wafer surface. The feasibility of the contact sensor, which detects frictional heat generated at the contact, was theoretically investigated focusing on the temperature rise of the sensor element. Simulation results with both the simple model of heat transfer and the FEM model showed that the expected temperature rise of the contact sensor is enough to be detected by the conventional electric circuit.


2018 ◽  
Vol 42 ◽  
pp. 34-48
Author(s):  
Nasrin MALEKZADEH ◽  
Esmaiel ABEDI

2015 ◽  
Vol 177 (3) ◽  
pp. 331-344
Author(s):  
Kadri Arslan ◽  
Alfonso Carriazo ◽  
Verónica Martín-Molina ◽  
Cengizhan Murathan

2019 ◽  
Vol 12 (1) ◽  
pp. 230-237 ◽  
Author(s):  
E. Yalcin ◽  
M. Can ◽  
C. Rodriguez-Seco ◽  
E. Aktas ◽  
R. Pudi ◽  
...  

Herein, we studied the use of two different Self Assembled Monolayers (SAMs) made of semiconductor hole transport organic molecules to replace the most common p-type contact, PEDOT:PSS, in PiN methyl ammonium lead iodide perovskite solar cells (PSCs).


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7491
Author(s):  
Abbas Panahi ◽  
Deniz Sadighbayan ◽  
Ebrahim Ghafar-Zadeh

This paper presents a new field-effect sensor called open-gate junction gate field-effect transistor (OG-JFET) for biosensing applications. The OG-JFET consists of a p-type channel on top of an n-type layer in which the p-type serves as the sensing conductive layer between two ohmic contacted sources and drain electrodes. The structure is novel as it is based on a junction field-effect transistor with a subtle difference in that the top gate (n-type contact) has been removed to open the space for introducing the biomaterial and solution. The channel can be controlled through a back gate, enabling the sensor’s operation without a bulky electrode inside the solution. In this research, in order to demonstrate the sensor’s functionality for chemical and biosensing, we tested OG-JFET with varying pH solutions, cell adhesion (human oral neutrophils), human exhalation, and DNA molecules. Moreover, the sensor was simulated with COMSOL Multiphysics to gain insight into the sensor operation and its ion-sensitive capability. The complete simulation procedures and the physics of pH modeling is presented here, being numerically solved in COMSOL Multiphysics software. The outcome of the current study puts forward OG-JFET as a new platform for biosensing applications.


Sign in / Sign up

Export Citation Format

Share Document