Timing of closure of the eastern Mongol–Okhotsk Ocean: Constraints from U–Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect

2020 ◽  
Vol 81 ◽  
pp. 58-78 ◽  
Author(s):  
Andrey A. Sorokin ◽  
Victor A. Zaika ◽  
Victor P. Kovach ◽  
Alexander B. Kotov ◽  
Wenliang Xu ◽  
...  
Geology ◽  
2021 ◽  
Author(s):  
Rasmus Haugaard ◽  
Pedro Waterton ◽  
Luke Ootes ◽  
D. Graham Pearson ◽  
Yan Luo ◽  
...  

Komatiitic magmatism is a characteristic feature of Archean cratons, diagnostic of the addition of juvenile crust, and a clue to the thermal evolution of early Earth lithosphere. The Slave craton in northwest Canada contains >20 greenstone belts but no identified komatiite. The reason for this dearth of komatiite, when compared to other Archean cratons, remains enigmatic. The Central Slave Cover Group (ca. 2.85 Ga) includes fuchsitic quartzite with relict detrital chromite grains in heavy-mineral laminations. Major and platinum group element systematics indicate that the chromites were derived from Al-undepleted komatiitic dunites. The chromites have low 187Os/188Os ratios relative to chondrite with a narrow range of rhenium depletion ages at 3.19 ± 0.12 Ga. While these ages overlap a documented crust formation event, they identify an unrecognized addition of juvenile crust that is not preserved in the bedrock exposures or the zircon isotopic data. The documentation of komatiitic magmatism via detrital chromites indicates a region of thin lithospheric mantle at ca. 3.2 Ga, either within or at the edge of the protocratonic nucleus. This study demonstrates the applicability of detrital chromites in provenance studies, augmenting the record supplied by detrital zircons.


2020 ◽  
Author(s):  
Qiong Chen ◽  
Guochun Zhao ◽  
et al.

Table S1: In-situ U-Pb ages and Hf isotopic data of detrital zircons from the Neoproterozoic–Cambrian samples from the western and eastern margins of South China.


2021 ◽  
Author(s):  
Elliot K. Foley ◽  
et al.

Sample locations, U-Pb and Hf isotopic data from analyzed detrital zircons, the analytical and instrument setup and procedures used, and crustal volume calculations.


2009 ◽  
Vol 146 (5) ◽  
pp. 701-716 ◽  
Author(s):  
XIAOPING XIA ◽  
MIN SUN ◽  
GUOCHUN ZHAO ◽  
FUYUAN WU ◽  
LIEWEN XIE

AbstractTwo types of metasedimentary rocks occur in the Trans-North China Orogen of the North China Craton. One type consists of highly metamorphosed supracrustal rocks with protoliths of mature cratonic shale, called khondalites, as found in the Lüliang Complex; rocks of the other type are also highly metamorphosed but less mature, as represented by the Wanzi supracrustal assemblage in the Fuping Complex. U–Pb isotopic data for detrital zircons from khondalites show a provenance dominated by 1.9–2.1 Ga Palaeoproterozoic rocks. These detrital zircons display a wide range of εHfvalues from −16.0 to +9.2 and give Hf isotopic model ages mostly around 2.3 Ga. The high positive εHfvalues approach those for the depleted mantle at 2.1 Ga, highlighting a juvenile crustal growth event in Palaeoproterozoic times. Hf isotopic data also imply thatc.2.6 Ga old crustal material was involved in the Palaeoproterozoic magmatic event. These data are similar to those for the khondalitic rocks from the interior of the Western Block of the North China Craton, suggesting a common provenance. In contrast, other metasedimentary rocks in the Trans-North China Orogen, such as the Wanzi supracrustal assemblage in the Fuping Complex, have a source region with both Palaeoproterozoic and Archaean rocks. Their detrital zircon Hf isotopic data indicate reworking of old crustal material and a lack of significant juvenile Palaeoproterozoic magmatic input. These rocks are similar to the coevally deposited meta-sedimentary rocks in the interior of the Eastern Block. We propose that the Lüliang khondalites were deposited on the eastern margin of the Western Block in a passive continental margin environment and were thrust eastward later during collision with the Eastern Block. Other metasedimentary rocks in the Trans-North China Orogen were deposited on the western margin of the Eastern Block in a continental arc environment. Our data support the eastward subduction model for the Palaeoproterozoic tectonic evolution of the North China Craton.


2020 ◽  
Author(s):  
Qiong Chen ◽  
Guochun Zhao ◽  
et al.

Table S1: In-situ U-Pb ages and Hf isotopic data of detrital zircons from the Neoproterozoic–Cambrian samples from the western and eastern margins of South China.


1995 ◽  
Vol 32 (8) ◽  
pp. 1155-1171 ◽  
Author(s):  
C. J. Greig ◽  
G. E. Gehrels

New U–Pb zircon ages are reported from western Stikinia. Devonian and Pennsylvanian ages of volcanic rocks at Oweegee dome confirm the presence of pre-Permian strata, and with Paleozoic and Triassic detrital zircons from Lower Jurassic sandstone, they help to demonstrate pre-Lower Jurassic deformation and uplift. The absence of pre-Paleozoic inherited zircon from all samples is consistent with Nd–Sr isotopic data which suggest that Stikinia consists mainly of juvenile crust. U–Pb ages for posttectonic intrusions suggest that structures in Skeena Fold Belt in the Kinskuch area formed prior to Eocene time. Five ages for felsic volcanic rocks from stratigraphically well-constrained upper parts of the Hazelton arc are approximately 196–199 Ma and suggest near-contemporaneity for cessation of volcanism in the areas studied. The Sinemurian or late Sinemurian – early Pliensbachian ages are older than previously reported U–Pb and biostratigraphic ages for presumed correlative rocks to the west, and westward-migrating volcanism is implied. Together with Toarcian fossils from overlying sandstone, the new ages suggest that a hiatus of moderate duration preceded regionally extensive sedimentation.


Sign in / Sign up

Export Citation Format

Share Document