scholarly journals Influence of chemical composition, porosity and fractal dimension on the electrical conductivity of carbon blacks

Heliyon ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. e04024 ◽  
Author(s):  
A. Macías-García ◽  
M.A. Díaz-Díez ◽  
M. Alfaro-Domínguez ◽  
J.P. Carrasco-Amador
2016 ◽  
Vol 3 (1) ◽  
Author(s):  
ANSHUMAN SINGH ◽  
ASHWANI KUMAR ◽  
R.K. YADAV ◽  
ASHIM DUTTA ◽  
D.K. SHARMA

Guav a cv . Allahabad Safeda w as grown in saline soils and irrigated with the best av ailable w ater -1 -1 + -1 (EC 2.8 dS m ). Based on chemical composition (pH- 7.1, EC - 2.8 dS m , Na - 20.04 meq l and IW IW sodium adsorption ratio- 4.86), irrigation w ater w as categorized as marginally saline. The soil pH 2 -1 w as mostly below 8.5 but mean electrical conductivity (EC ) v alues ranged from 0.5-2 dS m 2 indicating moderate to high salinity in the experimental soil. After one-y ear of experimentation, fiv e plants randomly selected from each treatment and the data w ere recorded. Plant height -1 -1 significantly increased (LSD 5%) with increase in salinity from 0.5 dS m to 1.4 dS m . A similar -1 trend w as noted with respect to stem girth. The av erage plant height at 0.5, 0.9 and 1.4 dS m salinity lev els w as 98.3 cm, 108.3 cm and 123 cm, respectiv ely whereas the corresponding stem girth v alues -1 w ere 2.24 cm, 2.28 cm and 2.46 cm. At 2 dS m salinity ,how ev er , both av erage plant height (94.6 cm) and stem girth (2.24 cm) significantly decreased and w ere found to be comparable to control (0.5 dS -1 + -1 m ) v alues. Plants show ed negligible Na accumulation in leav es up to 1.4 dS m salinity , but -1 + exposure to elev ated salinity (2 dS m ) significantly increased leaf Na (0.16% DW). These data -1 indicated a salinity tolerance (EC )threshold of about 1.5 dS m inguav a cultiv ar Allahabad Safeda.


2016 ◽  
Vol 61 (1) ◽  
pp. 353-360 ◽  
Author(s):  
B. Dybowski ◽  
J. Szymszal ◽  
Ł. Poloczek ◽  
A. Kiełbus

Due to low density and good mechanical properties, aluminium alloys are widely applied in transportation industry. Moreover, they are characterized by the specific physical properties, such as high electrical conductivity. This led to application of the hypoeutectic Al-Si-Mg alloys in the power generation industry. Proper selection of the alloys chemical composition is an important stage in achievement of the demanded properties. The following paper presents results of the research on the influence of alloys chemical composition on their properties. It has been revealed that Si and Ti addition decreases electrical conductivity of the Al-Si-Mg alloys, while Na addition increases it. The mechanical properties of the investigated alloys are decreased by both silicon and iron presence. Sodium addition increases ductility of the Al-Si-Mg alloys.


Author(s):  
K. L. Levine ◽  
D. V. Ryabokon ◽  
S. D. Khanin ◽  
R. V. Gelamo ◽  
N. A. Nikonorova

The paper studies multilayer graphenes in the form of free-standing films. The authors provide data about the morphology and electrical properties of films treated with plasma of various chemical composition. It is shown that it is possible to control the electrical properties of the surface and electron work function without significantly affecting its morphology. The obtained samples, combining mechanical flexibility with unreactiveness and high electrical conductivity, are promising for application in flexible charge storage devices.


2020 ◽  
Vol 223 (2) ◽  
pp. 993-1006
Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Phan Van Do ◽  
Nguyen Van Nghia A ◽  
Vu Phi Tuyen ◽  
...  

SUMMARY In reservoir and environmental studies, the geological material characterization is often done by measuring its electrical conductivity. Its main interest is due to its sensitivity to physical properties of porous media (i.e. structure, water content, or fluid composition). Its quantitative use therefore depends on the efficiency of the theoretical models to link them. In this study, we develop a new physically based model that takes into account the surface conductivity for estimating electrical conductivity of porous media under partially saturated conditions. The proposed model is expressed in terms of electrical conductivity of the pore fluid, water saturation, critical water saturation and microstructural parameters such as the minimum and maximum pore/capillary radii, the pore fractal dimension, the tortuosity fractal dimension and the porosity. Factors influencing the electrical conductivity in porous media are also analysed. From the proposed model, we obtain an expression for the relative electrical conductivity that is consistent with other models in literature. The model predictions are successfully compared with published experimental data for different types of porous media. The new physically based model for electrical conductivity opens up new possibilities to characterize porous media under partially saturated conditions with geoelectrical and electromagnetic techniques.


2011 ◽  
Vol 04 (02) ◽  
pp. 123-127 ◽  
Author(s):  
MUNEHIRO KIMURA ◽  
KONRAD ŚWIERCZEK ◽  
JACEK MARZEC ◽  
JANINA MOLENDA

In this work we present results of measurements of structural (XRD), microstructural (SEM, EDX, TEM) and transport (electrical conductivity, Seebeck coefficient) properties as well as results of Mössbauer and FTIR spectroscopy studies of phospho-olivine materials with assumed chemical composition Li 1-3x Al x FePO 4 (x = 0, 0.001, 0.005, 0.01, 0.02, 0.05 and 0.1). Based on the performed research, possibility of lithium sublattice doping by Al is discussed. Additionally, initial results of electrochemical tests of lithium batteries with obtained, phospho-olivine based cathode materials are provided.


1977 ◽  
Vol 55 (3) ◽  
pp. 270-275 ◽  
Author(s):  
J. P. Crine ◽  
A. Friedmann ◽  
M. R. Wertheimer ◽  
A. Yelon

The electrical conductivity of various North American micas has been measured at room temperature for electric field strengths ranging from 102 to 5 × 104 V cm−1. It is shown that the conductivities observed are consistent with a percolation model in which Fe3+ provides the hopping centers.


1999 ◽  
Vol 79 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Bernard Gagnon ◽  
Robert Robitaille ◽  
Régis R. Simard

Manure management and composting methods may greatly affect compost characteristics. An experiment was conducted to characterize 23 on-farm and 6 industrial composts in Québec (Canada). Cluster analysis identified two major groups characterized by their chemical composition, source materials, management intensity and degree of decomposition. Electrical conductivity, total N and K, water-soluble NH4+, PO4, K, Al and organic C, and a cress test were the best chemical and biological parameters for grouping composts. These groups were strongly associated with bedding rate, turning frequency, composting duration, profile windrow appearance, material aggregation and odor. When restricted to dairy manure composts, no clear relationship could be established by cluster analysis between material grouping and their farm management. Statistical analysis on single chemical parameters of dairy manure composts, however, identified five farm management factors: type and amount of bedding, system of manure handling and storage, compost windrow turning, composting length and milk production intensity. These factors affected one or several major parameters: pH, dry matter, electrical conductivity, total and water-soluble C, N, P and K, and humic components characteristics. This study demonstrated the importance of leaching losses in the on-farm composting operations in humid cold regions and the need for more environmentally sustainable composting methods. Key words: Farm manure management, composting, chemical composition


2003 ◽  
Vol 217 (1-4) ◽  
pp. 181-193 ◽  
Author(s):  
Dana Pantea ◽  
Hans Darmstadt ◽  
Serge Kaliaguine ◽  
Christian Roy

Sign in / Sign up

Export Citation Format

Share Document