scholarly journals B-PO03-181 LVOT DILATATION IS ASSOCIATED WITH REDUCED PERI-AORTIC BIPOLAR VOLTAGE IN PATIENTS UNDERGOING VT ABLATION

Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S263
Author(s):  
John Whitaker ◽  
Nathaniel Steiger ◽  
Clinton J. Thurber ◽  
Omar Kreidieh ◽  
Parinita A. Dherange ◽  
...  
Keyword(s):  
EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
F Zaraket ◽  
P Sanchez Somonte ◽  
L Quinto ◽  
P Garre ◽  
F Alarcon ◽  
...  

Abstract Background/Introduction Substrate-guided techniques have changed the approach and results of ventricular tachycardia (VT) ablation and electroanatomical voltage mapping (EAVM) constitutes a diagnostic and therapeutic cornerstone in this field. In current practice normal myocardium is typically characterized by bipolar voltage > 1.5 mV, dense scar < 0.5 mV, and border zone (BZ) tissue by the range between 0.5 to 1.5 mV. Of note, evidence for these cut-off values has been derived in humans from small observational studies and in animals. Furthermore, some studies suggest that only the 60% of not transmural endocardial scars and the 35% of not endocardial scars are detected without any adjustment of these values. New voltage cut-off values are needed. Purpose The purpose of this study is to adjust voltage cut off in order to establish the threshold that more accurately define the pathological substrate in VT ablation. Additionally, predictors of usefulness of current thresholds are analyzed. Methods EAVM were created with CARTO3 System and Sensor-Force catheter (Navistar Smart-Touch and Pentaray). We delineated the conducting channels by analyzing the late potentials activation. Based on these channels we looked for the best cut-off values to detect these channels. We describe the baseline characteristics, the best cut-off values for border zone and scar core in our series and we analyzed the accuracy of the current established values to detect the arrhythmogenic VT substrate Results We investigated 51 patients (74,5% males; 41,2% ischemic cardiomyopathy, mean LVEF 38,6% +/-13,6) with sustained monomorphic VT submitted to ablation during 2016 and 2017. The range of the voltage adjustment was from 0,01-1 mV for core area and 0,2-6mV as maximum, with an average of 0,31-1,42mV. Using currently accepted bipolar voltage cut-off <0.5 mV the core scar was correctly identified in 80,4% of patients: 90,4% in ischemic and 73,3% in NICM. Regarding BZ, using classical cut off (0.5-1.5mV) only 56,9 % of the cases were well identified: interestingly, accuracy was worse in NICM (46,6%) than in ischemic patients (71,4%) (p = 0,07). Conclusions EAVM is very important to detect scar and channels in VT ablation, but several elements can affect it and recently the traditional voltage values have been questioned. Our study suggests how the threshold as currently applied in daily practice could be acceptable to detect the core scar area, but it has to be reconsidered in NICM, especially regarding the border zone. An evident trend (p = 0,07) suggests a better accuracy of current values to define VT substrate in ischemic patients than in NICM. Abstract Figure. Channel Identification


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Y Takahashi ◽  
T Kitai ◽  
T Watanabe ◽  
T Fujita

Abstract Background Low-voltage zone (LVZ) in the left atrium (LA) seems to represent fibrosis. LA longitudinal strain assessed by speckle tracking method is known to correlate with the extent of fibrosis in patients with mitral valve disease. Purpose We sought to identify the relationship between LA longitudinal strain and LA bipolar voltage in patients with atrial fibrillation (AF). We tested the hypothesis that LA strain can predict LA bipolar voltage. Methods A total of 96 consecutive patients undergoing initial AF ablation were analyzed. All patients underwent transthoracic echocardiography including 2D speckle tracking measurement on the day before ablation during sinus rhythm (SR group, N=54) or during AF (AF group, N=42). LA longitudinal strain was measured at basal, mid, and roof level of septal, lateral, anterior, and inferior wall in apical 4- and 2-chamber view. Global longitudinal strain (GLS) was defined as an average value of the 12 segments. LA voltage map was created using EnSite system, and global mean voltage was defined as a mean of bipolar voltage of the whole LA excluding pulmonary veins and left atrial appendage. LVZ was defined as less than 1.0 mV. Results There was a significantly positive correlation between GLS and global mean voltage (r=0.708, p<0.001). Multivariate regression analysis showed that GLS and age were independent predictors of global mean voltage. There was a significant negative correlation between global mean voltage and LVZ areas. Conclusions There was a strong correlation between LA longitudinal strain and LA mean voltage. GLS can independently predict LA mean voltage, subsequently LVZ areas in patients with AF. Funding Acknowledgement Type of funding source: None


EP Europace ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 598-606
Author(s):  
Ivo Roca-Luque ◽  
Ana Van Breukelen ◽  
Francisco Alarcon ◽  
Paz Garre ◽  
Jose M Tolosana ◽  
...  

Abstract Aims Ventricular tachycardia (VT) substrate-based ablation has become a standard procedure. Electroanatomical mapping (EAM) detects scar tissue heterogeneity and define conduction channels (CCs) that are the ablation target. Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) is able to depict CCs and increase ablation success. Most patients undergoing VT ablation have an implantable cardioverter-defibrillator (ICD) that can cause image artefacts in LGE-CMR. Recently wideband (WB) LGE-CMR sequence has demonstrated to decrease these artefacts. The aim of this study is to analyse accuracy of WB-LGE-CMR in identifying the CC entrances. Methods and results Thirteen consecutive ICD-patients who underwent VT ablation after WB-LGE-CMR were included. Number and location of CC entrances in three-dimensional EAM and in WB-LGE-CMR reconstruction were compared. Concordance was compared with a historical cohort matched by cardiomyopathy, scar location, and age (26 patients) with LGE-CMR prior to ICD and VT ablation. In WB-CMR group, 101 and 93 CC entrances were identified in EAM and WB-LGE-CMR, respectively. In historical cohort, 179 CC entrances were identified in both EAM and LGE-CMR. The EAM/CMR concordance was 85.1% and 92.2% in the WB and historical group, respectively (P = 0.66). There were no differences in false-positive rate (CC entrances detected in CMR and absent in EAM: 7.5% vs 7.8% in WB vs. conventional CMR, P = 0.92) nor in false-negative rate (CC entrances present in EAM not detected in CMR: 14.9% vs.7.8% in WB vs. conventional CMR, P = 0.23). Epicardial CCs was predictor of poor CMR/EAM concordance (OR 2.15, P = 0.031). Conclusion Use of WB-LGE-CMR sequence in ICD-patients allows adequate VT substrate characterization to guide VT ablation with similar accuracy than conventional LGE-CMR in patients without an ICD.


2002 ◽  
Vol 49 (6) ◽  
pp. 3180-3184 ◽  
Author(s):  
R.L. Pease ◽  
M.C. Maher ◽  
M.R. Shaneyfelt ◽  
M.W. Savage ◽  
P. Baker ◽  
...  

Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S134-S135
Author(s):  
Jose L. Merino ◽  
Steven Kim ◽  
Jatin Relan ◽  
Margarita Sanroman ◽  
Sergio Castrejon ◽  
...  

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
L Fiedler ◽  
F Roithinger ◽  
I Roca ◽  
F Lorgat ◽  
A Roux ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Private company. Main funding source(s): Abbott Background 3D mapping systems are pivotal to identify low voltage areas and to define ablation strategies. In this context, high-density multipolar mapping catheters with varying electrode configurations are used for accurate myocardial substrate definition. High density mapping using a grid shaped catheter allows for use of simultaneous analysis of adjacent orthogonal bipolar signals that may assist in more accurate substrate characterization and ablation strategy decisions. Purpose This was a prospective, multicenter observational study to characterize the utility of electroanatomical mapping with a high density grid-style mapping catheter (HD Grid) in subjects undergoing catheter ablation for persistent atrial fibrillation (PersAF) or ventricular tachycardia (VT) in real-world clinical settings. Methods Mapping was performed with the HD Grid catheter to generate high-density maps of cardiac chambers in order to assess the potential influence of the simultaneous orthogonal bipole configuration on PersAF and VT ablation strategies. Differences in substrate identification between simultaneous orthogonal bipole configuration and standard along-the-spline electrode configuration, and potential effects on ablation strategies were investigated. Results During the study period (January 2019 through April 2020), 367 subjects underwent catheter ablation for PersAF (N = 333, average age 64.1yr, 75% male) or VT (N = 34, average age = 64.3yr, 85.3% male). In total, 494 maps were generated to treat patients undergoing PersAF ablation and 57 to treat patients undergoing VT ablation. Compared to standard along-the-spline configuration, mapping with the simultaneous orthogonal bipole configuration showed differences in 57.8% (178/308) of maps generated, with the greatest difference noticed in surface area of low voltage (62.9%) and location of low voltage (55.6%). In comparisons performed live during the procedure (n = 50), simultaneous orthogonal bipole configuration assisted in identification of ablation targets in 70.0% of cases, changing the ablation strategy compared to that identified with along-the-spline configuration in 34.3%. In comparisons performed retrospectively after the procedure (n = 258), the ablation strategy identified with simultaneous orthogonal bipole configuration differed from along-the-spline configuration in 21.7% of maps. Even compared to a higher-density electrode configuration using all-bipoles rather than along-the-spline bipoles, simultaneous orthogonal bipole configuration identified differences in 57.1% of maps. Conclusion The HD grid catheter combined with simultaneous orthogonal bipole configuration can define myocardial substrate more accurately compared to standard along-the-spline configuration. The difference in substrate identification has potential impact on ablation strategy. Further clinical trials are needed to elucidate the role of orthogonal bipole configuration mapping and improved ablation success rates.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Pouria Alipour ◽  
Yaariv Khaykin ◽  
Meysam Pirbaglou ◽  
Paul Ritvo ◽  
Gal Hayam ◽  
...  

Introduction: Ablation of ventricular tachycardia (VT) substrate in patient at risk for VT in the setting of ischemic heart disease is a technically challenging procedure. We thought to evaluate a novel algorithm used to automatically identify target electrograms. Methods: 16 consecutive patients (70±10 years of age, 90% male, 34±18% LV EF) had 20 ablations for ischemic VT using CARTO 3 mapping system over 2 years. Left ventricular (LV) substrate was mapped during right ventricular (RV) apical stimulation. Navistar Thermocool 3.5 mm irrigated tip catheters were used in all patients. A novel algorithm counting the number of electrogram deflections (NOD) crossing the 0.05mV noise threshold and duration of time from first to last such deflection during the window of interest (total fractionation time, TFT) was applied to all acquired maps after ablation was complete. Snapshots of 200 electrograms representing the high and low end of TFT and NOD values were presented to a group of 8 electrophysiologists experienced in VT ablation who were asked to select electrograms they would target for substrate ablation. The diagnostic accuracy of TFT and NOD values was then analysed. Results: Across the range of TFT values (0.0-281.0 ms), a cut-off value of 49.0 ms (81.6% sensitivity, 57% specificity) was established as an optimal indicator of an ablation target. Area under the curve for TFT was 0.675 (95% CI: 0.59-0.75, p=0.001). For NOD values (0.0-70.0 deflections), a cut off of 4.5 deflections (88.0% Sensitivity, 57 % specificity) was established as an optimal indicator of an ablation target. The area under the curve for NOD yielded an area of 0.75 (95% CI: 0.68-0.82, P=0.001). For TFT-NOD product as a variable, a cut-off value of 64 (91.0% Sensitivity, 52.4 % specificity) an optimal indicator of an ablation target. The Area under the curve for NOD and TFT multiple was 0.72 (95% CI: 0.65-0.80, P=0.001). Conclusion: A novel algorithm may be able to automatically classify LV substrate during mapping and ablation of ischemic VT with high sensitivity and acceptable specificity.


Sign in / Sign up

Export Citation Format

Share Document