Facile green synthesis of copper oxide nanoparticles for the eradication of multidrug resistant Klebsiella pneumonia and Helicobacter pylori biofilms

2021 ◽  
Vol 159 ◽  
pp. 105201
Author(s):  
Minha Naseer ◽  
Rana Ramadan ◽  
Jianmin Xing ◽  
Nadia A. Samak
2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Hemalatha D ◽  
Saraswath S

In material science, green method for synthesis of nanomaterials is feasible, cheaper and eco-friendly protocol. To accomplish this phenomenon, present study was aimed to synthesize Copper oxide nanoparticles using leaf extract of Aloevera with two different precursors CuCl2.2H2O (Cupric chloride) and CuSo4.5H2O (Cupric sulfate). The extraction of Aloevera is employed as reducing and stabilizing agent for this synthesis.Copper oxide Nanoparticles is effective use of biomedical application due to their antibacterial function. The synthesized Copper oxide nanoparticles were characterized by X-Ray Diffraction Spectroscopy (XRD), Energy Dispersive Spectroscopy (EDX), FourierTransform Infrared Spectroscopy (FT- IR) and Scanning Electron Microscope(SEM). XRD studies reveal the crystallographic nature of Copper oxide nanoparticles. Furthermore the Copper oxide nanoparticles have good Antibacterial activity against both gram negative (E.Coli, Klebsiella pneumonia) and gram positive (Bacillus cereus, Staphylococcus aureus)bacteria.


Author(s):  
Monika Vats ◽  
Shruti Bhardwaj ◽  
Arvind Chhabra

Background & Objective: Nanoparticles are used in cosmetic and dermatologic products, due to better skin penetration properties. Incorporation of natural products exhibiting medicinal properties in nano-preparations could significantly improve efficacy of these products and improve the quality of life without the side effects of synthetic formulations. Methods: We here report green synthesis of Copper Oxide nanoparticles, using Cucumber extract, and their detailed biophysical and bio-chemical characterization. Results: These Copper Oxide-Cucumber nanoparticles exhibit significant anti-bacterial and anti-fungal properties, Ultra Violet-radiation protection ability and reactive-oxygen species inhibition properties. Importantly, these nanoparticles do not exhibit significant cellular toxicity and, when incorporated in skin cream, exhibit skin rejuvenating properties. Conclusion: Our findings have implications for nanoparticle-based cosmetics and dermatologic applications.


2020 ◽  
Vol 17 (2) ◽  
pp. 531-540 ◽  
Author(s):  
Bhavika Turakhia ◽  
Madhihalli Basavaraju Divakara ◽  
Mysore Sridhar Santosh ◽  
Sejal Shah

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 78
Author(s):  
Karla Araya-Castro ◽  
Tzu-Chiao Chao ◽  
Benjamín Durán-Vinet ◽  
Carla Cisternas ◽  
Gustavo Ciudad ◽  
...  

Amongst different living organisms studied as potential candidates for the green synthesis of copper nanoparticles, algal biomass is presented as a novel and easy-to-handle method. However, the role of specific biomolecules and their contribution as reductant and capping agents has not yet been described. This contribution reports a green synthesis method to obtain copper oxide nanoparticles (CuO-NPs) using separated protein fractions from an aqueous extract of brown algae Macrocystis pyrifera through size exclusion chromatography (HPLC-SEC). Proteins were detected by a UV/VIS diode array, time-based fraction collection was carried out, and each collected fraction was used to evaluate the synthesis of CuO-NPs. The characterization of CuO-NPs was evaluated by Dynamic Light Scattering (DLS), Z-potential, Fourier Transform Infrared (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) detector. Low Molecular Weight (LMW) and High Molecular Weight (HMW) protein fractions were able to synthesize spherical CuO-NPs. TEM images showed that the metallic core present in the observed samples ranged from 2 to 50 nm in diameter, with spherical nanostructures present in all containing protein samples. FTIR measurements showed functional groups from proteins having a pivotal role in the reduction and stabilization of the nanoparticles. The highly negative zeta potential average values from obtained nanoparticles suggest high stability, expanding the range of possible applications. This facile and novel protein-assisted method for the green synthesis of CuO-NPs may also provide a suitable tool to synthesize other nanoparticles that have different application areas.


2019 ◽  
Vol 257 ◽  
pp. 126685 ◽  
Author(s):  
Taynara Basso Vidovix ◽  
Heloise Beatriz Quesada ◽  
Eduarda Freitas Diogo Januário ◽  
Rosângela Bergamasco ◽  
Angélica Marquetotti Salcedo Vieira

Optik ◽  
2020 ◽  
Vol 219 ◽  
pp. 165280
Author(s):  
Reem M. Altuwirqi ◽  
Alaa S. Albakri ◽  
Hala Al-Jawhari ◽  
Entesar A. Ganash

Sign in / Sign up

Export Citation Format

Share Document