Electrons on closed field lines of lunar crustal fields in the solar wind wake

Icarus ◽  
2015 ◽  
Vol 250 ◽  
pp. 238-248 ◽  
Author(s):  
Masaki N. Nishino ◽  
Yoshifumi Saito ◽  
Hideo Tsunakawa ◽  
Futoshi Takahashi ◽  
Masaki Fujimoto ◽  
...  
Keyword(s):  
2006 ◽  
Vol 24 (2) ◽  
pp. 689-705 ◽  
Author(s):  
M. L. Parkinson

Abstract. Akasofu's solar wind ε parameter describes the coupling of solar wind energy to the magnetosphere and ionosphere. Analysis of fluctuations in ε using model independent scaling techniques including the peaks of probability density functions (PDFs) and generalised structure function (GSF) analysis show the fluctuations were self-affine (mono-fractal, single exponent scaling) over 9 octaves of time scale from ~46 s to ~9.1 h. However, the peak scaling exponent α0 was a function of the fluctuation bin size, so caution is required when comparing the exponents for different data sets sampled in different ways. The same generic scaling techniques revealed the organisation and functional form of concurrent fluctuations in azimuthal magnetospheric electric fields implied by SuperDARN HF radar measurements of line-of-sight Doppler velocity, vLOS, made in the high-latitude austral ionosphere. The PDFs of vLOS fluctuation were calculated for time scales between 1 min and 256 min, and were sorted into noon sector results obtained with the Halley radar, and midnight sector results obtained with the TIGER radar. The PDFs were further sorted according to the orientation of the interplanetary magnetic field, as well as ionospheric regions of high and low Doppler spectral width. High spectral widths tend to occur at higher latitude, mostly on open field lines but also on closed field lines just equatorward of the open-closed boundary, whereas low spectral widths are concentrated on closed field lines deeper inside the magnetosphere. The vLOS fluctuations were most self-affine (i.e. like the solar wind ε parameter) on the high spectral width field lines in the noon sector ionosphere (i.e. the greater cusp), but suggested multi-fractal behaviour on closed field lines in the midnight sector (i.e. the central plasma sheet). Long tails in the PDFs imply that "microbursts" in ionospheric convection occur far more frequently, especially on open field lines, than can be captured using the effective Nyquist frequency and volume resolution of SuperDARN radars.


2004 ◽  
Vol 22 (3) ◽  
pp. 1033-1046 ◽  
Author(s):  
T. J. Stubbs ◽  
M. Lockwood ◽  
P. Cargill ◽  
M. Grande ◽  
B. Kellett ◽  
...  

Abstract. We study here the injection and transport of ions in the convection-dominated region of the Earth's magnetosphere. The total ion counts from the CAMMICE MICS instrument aboard the POLAR spacecraft are used to generate occurrence probability distributions of magnetospheric ion populations. MICS ion spectra are characterised by both the peak in the differential energy flux, and the average energy of ions striking the detector. The former permits a comparison with the Stubbs et al. (2001) survey of He2+ ions of solar wind origin within the magnetosphere. The latter can address the occurrences of various classifications of precipitating particle fluxes observed in the topside ionosphere by DMSP satellites (Newell and Meng, 1992). The peak energy occurrences are consistent with our earlier work, including the dawn-dusk asymmetry with enhanced occurrences on the dawn flank at low energies, switching to the dusk flank at higher energies. The differences in the ion energies observed in these two studies can be explained by drift orbit effects and acceleration processes at the magnetopause, and in the tail current sheet. Near noon at average ion energies of ≈1keV, the cusp and open LLBL occur further poleward here than in the Newell and Meng survey, probably due to convection- related time-of-flight effects. An important new result is that the pre-noon bias previously observed in the LLBL is most likely due to the component of this population on closed field lines, formed largely by low energy ions drifting earthward from the tail. There is no evidence here of mass and momentum transfer from the solar wind to the LLBL by non-reconnection coupling. At higher energies ≈2–20keV), we observe ions mapping to the auroral oval and can distinguish between the boundary and central plasma sheets. We show that ions at these energies relate to a transition from dawnward to duskward dominated flow, this is evidence of how ion drift orbits in the tail influence the location and behaviour of the plasma populations in the magnetosphere. Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetosphere-ionosphere interactions; magnetospheric configuration and dynamic)


2021 ◽  
Author(s):  
Simon Good ◽  
Emilia Kilpua ◽  
Matti Ala-Lahti ◽  
Adnane Osmane ◽  
Stuart Bale ◽  
...  

<p>Magnetic clouds are large-scale transient structures in the solar wind with low plasma <em>β</em>, low-amplitude magnetic field fluctuations, and twisted field lines with both ends often connected to the Sun. We analyse the normalised cross helicity, <em>σ</em><sub>c</sub>, and residual energy, <em>σ</em><sub>r</sub>, in magnetic clouds observed by Parker Solar Probe (PSP). In the November 2018 cloud observed at 0.25 au, a low value of <em>σ</em><sub>c</sub> was present in the cloud core, indicating that wave power parallel and anti-parallel to the mean field was approximately balanced, while the cloud’s outer layers displayed larger amplitude Alfvénic fluctuations with high <em>σ</em><sub>c</sub> values and <em>σ</em><sub>r</sub> ~ 0. These properties are compared and contrasted to those found in clouds observed by PSP at larger heliocentric distances. We suggest that low <em>σ</em><sub>c</sub> is likely a common feature of magnetic clouds given their typically closed field structure, in contrast to the generally higher <em>σ</em><sub>c</sub> found on the open field lines of the solar wind.</p>


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 314
Author(s):  
Skralan Hosteaux ◽  
Emmanuel Chané ◽  
Stefaan Poedts

Magnetised coronal mass ejections (CMEs) are quite substantially deformed during their journey form the Sun to the Earth. Moreover, the interaction of their internal magnetic field with the magnetic field of the ambient solar wind can cause deflection and erosion of their mass and magnetic flux. We here analyse axisymmetric (2.5D) MHD simulations of normal and inverse CME, i.e., with the opposite or same polarity as the background solar wind, and attempt to quantify the erosion and the different forces that operate on the CMEs during their evolution. By analysing the forces, it was found that an increase of the background wind density results in a stronger plasma pressure gradient in the sheath that decelerates the magnetic cloud more. This in turn leads to an increase of the magnetic pressure gradient between the centre of the magnetic cloud and the separatrix, causing a further deceleration. Regardless of polarity, the current sheet that forms in our model between the rear of the CME and the closed field lines of the helmet streamer, results in magnetic field lines being stripped from the magnetic cloud. It is also found that slow normal CMEs experience the same amount of erosion, regardless of the background wind density. Moreover, as the initial velocity increases, so does the influence of the wind density on the erosion. We found that increasing the CME speed leads to a higher overall erosion due to stronger magnetic reconnection. For inverse CMEs, field lines are not stripped away but added to the magnetic cloud, leading to about twice as much magnetic flux at 1 AU than normal CMEs with the same initial flux.


2007 ◽  
Vol 25 (6) ◽  
pp. 1433-1463 ◽  
Author(s):  
S. W. H. Cowley ◽  
J. D. Nichols ◽  
D. J. Andrews

Abstract. We construct a simple model of the plasma flow, magnetosphere-ionosphere coupling currents, and auroral precipitation in Jupiter's magnetosphere, and examine how they respond to compressions and expansions of the system induced by changes in solar wind dynamic pressure. The main simplifying assumption is axi-symmetry, the system being modelled principally to reflect dayside conditions. The model thus describes three magnetospheric regions, namely the middle and outer magnetosphere on closed magnetic field lines bounded by the magnetopause, together with a region of open field lines mapping to the tail. The calculations assume that the system is initially in a state of steady diffusive outflow of iogenic plasma with a particular equatorial magnetopause radius, and that the magnetopause then moves rapidly in or out due to a change in the solar wind dynamic pressure. If the change is sufficiently rapid (~2–3 h or less) the plasma angular momentum is conserved during the excursion, allowing the modified plasma angular velocity to be calculated from the radial displacement of the field lines, together with the modified magnetosphere-ionosphere coupling currents and auroral precipitation. The properties of these transient states are compared with those of the steady states to which they revert over intervals of ~1–2 days. Results are shown for rapid compressions of the system from an initially expanded state typical of a solar wind rarefaction region, illustrating the reduction in total precipitating electron power that occurs for modest compressions, followed by partial recovery in the emergent steady state. For major compressions, however, typical of the onset of a solar wind compression region, a brightened transient state occurs in which super-rotation is induced on closed field lines, resulting in a reversal in sense of the usual magnetosphere-ionosphere coupling current system. Current system reversal results in accelerated auroral electron precipitation occurring in the outer magnetosphere region rather than in the middle magnetosphere as is usual, with peak energy fluxes occurring just poleward of the boundary between the outer and middle magnetosphere. Plasma sub-corotation is then re-established as steady-state conditions re-emerge, together with the usual sense of flow of the closed field current system and renewed but weakened accelerated electron precipitation in the middle magnetosphere. Results for rapid expansions of the system from an initially compressed state typical of a solar wind compression region are also shown, illustrating the enhancement in precipitating electron power that occurs in the transient state, followed by partial reduction as steady conditions re-emerge.


2001 ◽  
Vol 19 (9) ◽  
pp. 1065-1088 ◽  
Author(s):  
T. M. Bauer ◽  
R. A. Treumann ◽  
W. Baumjohann

Abstract. We analyze 22 AMPTE/IRM crossings of the day-side low-latitude boundary layer for which a dense outer part can be distinguished from a dilute inner part. Whereas the plasma in the outer boundary layer (OBL) is dominated by solar wind particles, the partial densities of solar wind and magnetospheric particles are comparable in the inner boundary layer (IBL). For 11 events we find a reasonable agreement between observed plasma flows and those predicted by the tangential stress balance of an open magnetopause. Thus, we conclude that, at least in these cases, the OBL is formed by a local magnetic reconnection. The disagreement with the tangential stress balance in the other 11 cases might be due to reconnection being time-dependent and patchy. The north-south component of the proton bulk velocity in the boundary layer is, on average, directed toward high latitudes for both low and high magnetic shear across the magnetopause. This argues clearly against the possibility that the dayside low-latitude boundary layer is populated with solar wind plasma primarily from the cusps. "Warm", counterstreaming electrons that originate primarily from the magnetosheath and have a field-aligned temperature that is higher than the electron temperature in the magnetosheath by a factor of 1–5, are a characteristic feature of the IBL. Profiles of the proton bulk velocity and the density of hot ring current electrons provide evidence that the IBL is on closed field lines. Part of the IBL may be on newly opened field lines. Using the average spectra of electric and magnetic fluctuations in the boundary layer, we estimate the diffusion caused by lower hybrid drift instability, gyroresonant pitch angle scattering, or kinetic Alfvén wave turbulence. We find that cross-field diffusion cannot transport solar wind plasma into the OBL or IBL at a rate that would account for the thickness ( ~ 1000 km) of these sublayers. On the duskside, the dawn-dusk component of the proton bulk velocity in the IBL and magnetosphere is, on average, directed from the nightside toward local noon. Formation of the IBL may also be due to mechanisms operating in the magnetotail.Key words. Magnetospheric physics (magnetopause, cusp and boundary layer; magnetospheath)


2004 ◽  
Vol 22 (4) ◽  
pp. 1379-1394 ◽  
Author(s):  
S. W. H. Cowley ◽  
E. J. Bunce ◽  
R. Prangé

Abstract. We consider the flows and currents in Saturn's polar ionosphere which are implied by a three-component picture of large-scale magnetospheric flow driven both by planetary rotation and the solar wind interaction. With increasing radial distance in the equatorial plane, these components consist of a region dominated by planetary rotation where planetary plasma sub-corotates on closed field lines, a surrounding region where planetary plasma is lost down the dusk tail by the stretching out of closed field lines followed by plasmoid formation and pinch-off, as first described for Jupiter by Vasyliunas, and an outer region driven by the interaction with the solar wind, specifically by reconnection at the dayside magnetopause and in the dawn tail, first discussed for Earth by Dungey. The sub-corotating flow on closed field lines in the dayside magnetosphere is constrained by Voyager plasma observations, showing that the plasma angular velocity falls to around half of rigid corotation in the outer magnetosphere, possibly increasing somewhat near the dayside magnetopause, while here we provide theoretical arguments which indicate that the flow should drop to considerably smaller values on open field lines in the polar cap. The implied ionospheric current system requires a four-ring pattern of field-aligned currents, with distributed downward currents on open field lines in the polar cap, a narrow ring of upward current near the boundary of open and closed field lines, and regions of distributed downward and upward current on closed field lines at lower latitudes associated with the transfer of angular momentum from the planetary atmosphere to the sub-corotating planetary magnetospheric plasma. Recent work has shown that the upward current associated with sub-corotation is not sufficiently intense to produce significant auroral acceleration and emission. Here we suggest that the observed auroral oval at Saturn instead corresponds to the ring of upward current bounding the region of open and closed field lines. Estimates indicate that auroras of brightness from a few kR to a few tens of kR can be produced by precipitating accelerated magnetospheric electrons of a few keV to a few tens of keV energy, if the current flows in a region which is sufficiently narrow, of the order of or less than ~1000 km (~1° latitude) wide. Arguments are also given which indicate that the auroras should typically be significantly brighter on the dawn side of the oval than at dusk, by roughly an order of magnitude, and should be displaced somewhat towards dawn by the down-tail outflow at dusk associated with the Vasyliunas cycle. Model estimates are found to be in good agreement with data derived from high quality images newly obtained using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, both in regard to physical parameters, as well as local time effects. The implication of this picture is that the form, position, and brightness of Saturn's main auroral oval provide remote diagnostics of the magnetospheric interaction with the solar wind, including dynamics associated with magnetopause and tail plasma interaction processes. Key words. Magnetospheric physics (auroral phenomena, magnetosphere-ionosphere interactions, solar windmagnetosphere interactions)


Author(s):  
Charles F. Kennel

Dungey’s (1961a) pattern of internal magnetospheric convection was similar to that of Axford and Hines (1961). However, his model made testable statements about the structure of the magnetosphere that were not contained in the viscous convection model. It predicted that solar wind plasma enters the magnetosphere over the polar caps, that open field lines connect the polar caps directly to the interplanetary magnetic field, and that these field lines are stretched into a long, low-density magnetic tail. There would be a current layer separating the two lobes of the tail, and surrounding it, a sheet of relatively dense, hot, earthward-convecting plasma confined by closed field lines. A second magnetic neutral line would terminate the earthward flow region (Levy et al., 1964; Axford et al., 1965; Petschek, 1966; Axford, 1969). To preserve the steady state, reconnection at the tail neutral line had to have the same rate as at the dayside magnetopause. Clearly, the two reconnection regions ought to be major drivers of magnetospheric activity. Yet unambiguous proof of the existence of magnetopause reconnection was not found until 1979, 18 years after the reconnection model was proposed, and no one knew where to look for tail reconnection, because Dungey’s model did not say how far away the tail neutral line was. However, the closure of the slow expansion fans carrying solar wind plasma into the tail lobes was a natural way to force tail reconnection (Coroniti and Kennel, 1979). This closure point is fifty to one hundred earth radii downstream of earth. Twenty-four years were to pass before the average location of the tail neutral line could be established, because no spacecraft until ISEE-3 spent enough time that far downtail. In retrospect, it is a testament to the power of the paradigm that so many would search for so long for direct evidence of dayside and nightside reconnection without jettisoning Dungey’s model altogether. Faith in Dungey’s model was sustained by its collateral predictions. The access of energetic particles of solar origin to the polar cap ionosphere confirmed that reconnection occurs.


2006 ◽  
Vol 24 (10) ◽  
pp. 2645-2665 ◽  
Author(s):  
Y. V. Bogdanova ◽  
C. J. Owen ◽  
A. N. Fazakerley ◽  
B. Klecker ◽  
H. Rème

Abstract. The nature of particle precipitations at dayside mid-altitudes can be interpreted in terms of the evolution of reconnected field lines. Due to the difference between electron and ion parallel velocities, two distinct boundary layers should be observed at mid-altitudes between the boundary between open and closed field lines and the injections in the cusp proper. At lowest latitudes, the electron-dominated boundary layer, named the "electron edge" of the Low-Latitude Boundary Layer (LLBL), contains soft-magnetosheath electrons but only high-energy ions of plasma sheet origin. A second layer, the LLBL proper, is a mixture of both ions and electrons with characteristic magnetosheath energies. The Cluster spacecraft frequently observe these two boundary layers. We present an illustrative example of a Cluster mid-altitude cusp crossing with an extended electron edge of the LLBL. This electron edge contains 10–200 eV, low-density, isotropic electrons, presumably originating from the solar wind halo population. These are occasionally observed with bursts of parallel and/or anti-parallel-directed electron beams with higher fluxes, which are possibly accelerated near the magnetopause X-line. We then use 3 years of data from mid-altitude cusp crossings (327 events) to carry out a statistical study of the location and size of the electron edge of the LLBL. We find that the equatorward boundary of the LLBL electron edge is observed at 10:00–17:00 magnetic local time (MLT) and is located typically between 68° and 80° invariant latitude (ILAT). The location of the electron edge shows a weak, but significant, dependence on some of the external parameters (solar wind pressure, and IMF BZ- component), in agreement with expectations from previous studies of the cusp location. The latitudinal extent of the electron edge has been estimated using new multi-spacecraft techniques. The Cluster tetrahedron crosses the electron and ion boundaries of the LLBL/cusp with time delays of 1–40 min between spacecraft. We reconstruct the motion of the electron boundary between observations by different spacecraft to improve the accuracy of the estimation of the boundary layer size. In our study, the LLBL electron edge is distinctly observed in 87% of mid-altitude LLBL/cusp crossings with clear electron and ion equatorward boundaries equivalent to 35% of all LLBL/cusp crossings by Cluster. The size of this region varied between 0°–2° ILAT with a median value of 0.2° ILAT. Generally, the size of the LLBL electron edge depends on the combination of many parameters. However, we find an anti-correlation between the size of this region and the strength of the IMF, the absolute values of the IMF BY- and BZ-components and the solar wind dynamic pressure, as is expected from a simple reconnection model for the origin of this region.


Sign in / Sign up

Export Citation Format

Share Document