Incorrect identification of Streptococcus pneumoniae and its effect on antimicrobial resistance rates

2009 ◽  
Vol 33 (1) ◽  
pp. 93-95 ◽  
Author(s):  
Jae-Hoon Song ◽  
Jin Yang Baek ◽  
Hae Suk Cheong ◽  
Kyong Ran Peck ◽  
Kwan Soo Ko
2012 ◽  
Vol 56 (7) ◽  
pp. 3989-3991 ◽  
Author(s):  
Emilio Pérez-Trallero ◽  
José M. Marimón ◽  
Marta Alonso ◽  
María Ercibengoa ◽  
José M. García-Arenzana

ABSTRACTChanges in the antimicrobial susceptibility ofStreptococcus pneumoniaecausing otitis media were studied in 916 isolates from children <5 years old between 1999 and 2010 in a region of northern Spain. The rate of antimicrobial resistance decreased between the period before the introduction of the heptavalent pneumococcal conjugate vaccine (from 1999 to 2001) and the period from 2005 to 2007. However, in 2008 to 2010, resistance rates increased again due to the spread of serotype 19A, especially the multidrug-resistant ST320 and ST276 clones.


2002 ◽  
Vol 46 (5) ◽  
pp. 1295-1301 ◽  
Author(s):  
Donald E. Low ◽  
Joyce de Azavedo ◽  
Karl Weiss ◽  
Tony Mazzulli ◽  
Magdalena Kuhn ◽  
...  

ABSTRACT A total of 2,245 clinical isolates of Streptococcus pneumoniae were collected from 63 microbiology laboratories from across Canada during 2000 and characterized at a central laboratory. Of these isolates, 12.4% were not susceptible to penicillin (penicillin MIC, ≥0.12 μg/ml) and 5.8% were resistant (MIC, ≥2 μg/ml). Resistance rates among non-β-lactam agents were the following: macrolides, 11.1%; clindamycin, 5.7%; chloramphenicol, 2.2%; levofloxacin, 0.9%; gatifloxacin, 0.8%; moxifloxacin, 0.4%; and trimethoprim-sulfamethoxazole, 11.3%. The MICs at which 90% of the isolates were inhibited (MIC90s) of the fluoroquinolones were the following: gemifloxacin, 0.03 μg/ml; BMS-284756, 0.06 μg/ml; moxifloxacin, 0.12 μg/ml; gatifloxacin, 0.25 μg/ml; levofloxacin, 1 μg/ml; and ciprofloxacin, 1 μg/ml. Of 578 isolates from the lower respiratory tract, 21 (3.6%) were inhibited at ciprofloxacin MICs of ≥4 μg/ml. None of the 768 isolates from children were inhibited at ciprofloxacin MICs of ≥4 μg/ml, compared to 3 of 731 (0.6%) from those ages 15 to 64 (all of these >60 years old), and 27 of 707 (3.8%) from those over 65. The MIC90s for ABT-773 and telithromycin were 0.015 μg/ml for macrolide-susceptible isolates and 0.12 and 0.5 μg/ml, respectively, for macrolide-resistant isolates. The MIC of linezolid was ≤2 μg/ml for all isolates. Many of the new antimicrobial agents tested in this study appear to have potential for the treatment of multidrug-resistant strains of pneumococci.


2017 ◽  
Vol 32 (1) ◽  
Author(s):  
Makhtar Camara ◽  
Assane Dieng ◽  
Abdoulaye Diop ◽  
Amadou Diop ◽  
Amadou Diop ◽  
...  

<em>Background and aims.</em> <em>Streptococcus pneumoniae,</em> <em>Haemophilus influenzae</em> and <em>Moraxella</em> <em>catarrhalis</em> are the most common causative agents of acute respiratory tract infections (RTIs). The objective of this study was to assess their susceptibility to several antibiotics.<br /><em>Materials and methods</em>. A total of 58 strains (16 <em>S. pneumoniae</em>, 19 <em>H. influenzae</em> and 23 <em>M. catarrhalis</em>) were isolated from samples collected in two paediatric centres, and their susceptibility to commonly used antibiotics tested by E-test. <br /><em>Results</em>. Among <em>H. influenzae</em> isolates, 10.5% were resistant to ampicillin (all β-lactamase-positive), and 88.9% were susceptible to cefaclor. High β-lactam resistance rates (penicillin: 31.3% and cephalosporins: 18.7 to 31.3%) had been observed among <em>S</em>. <em>pneumonia</em> strains. Only 50% of isolates were susceptible to azithromycine. 91.3% of <em>M</em>. <em>catarrhalis</em> isolates β-lactamases producers were resistant to ampicillin while susceptible to the most tested antibiotics. <br /><em>Conclusions</em>. Except <em>M. catarrhalis</em> β-lactamases producing strains, frequency of antibiotic resistance was mainly observed among <em>S. pneumoniae,</em> and to a lesser extent among <em>H</em>. <em>influenzae</em> clinical isolates, suggesting the need for continuous surveillance of antimicrobial resistance patterns in the management of RTIs.


2013 ◽  
Vol 62 (8) ◽  
pp. 1204-1210 ◽  
Author(s):  
Sungkyoung Lee ◽  
Songmee Bae ◽  
Kwang-Jun Lee ◽  
Jae-Yon Yu ◽  
Yeonho Kang

We investigated changes in serotypes and antimicrobial susceptibilities among 386 isolates of invasive Streptococcus pneumoniae collected from numerous hospitals in Korea from 1996 to 2008. Serotypes 19F (9.8 %), 23F (8.3 %), 19A (7.8 %), 6A (7.5 %), 3 (7.3 %), 9V (6.5 %), 6B (6.2 %), 14 (4.9 %), 1 (3.9 %), 11A (3.9 %) and 4 (3.1 %) represented 69.2 % of all isolates. While the overall proportion of PCV7 serotypes was stable over time, we observed modest decreases in children <5 years old and in adults ≥65 years old between 1996–1999 and 2007–2008. An increased prevalence of non-PCV7 serotypes in these age groups was primarily attributable to an increase in serotypes 3, 6A and 19A. Most invasive S. pneumoniae isolates showed high resistance rates to erythromycin (74.9 %), tetracycline (71.1 %) and clindamycin (61.7 %). Between 1996–2003 and 2004–2008, non-susceptibility rates to cefotaxime and multi-drugs (three or more classes) in PCV7 serotypes showed a declining trend, while in non-PCV7 serotypes there was an increasing trend. Non-PCV7 serotypes 6A and 19A, which mostly exhibited multidrug-resistant phenotypes (69.0 % and 76.7 % respectively), increased between 1996–2003 and 2004–2008. Although PCV7 was introduced in Korea in November 2003, pneumococcal vaccination has not been included in the national child vaccination programme. Our results provide details of serotype occurrence that will be useful when adoption of universal pneumococcal vaccination in Korea is being considered.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Sónia Gomes ◽  
Conceição Fernandes ◽  
Sandra Monteiro ◽  
Edna Cabecinha ◽  
Amílcar Teixeira ◽  
...  

The inappropriate use of antibiotics, one of the causes of the high incidence of antimicrobial-resistant bacteria isolated from aquatic ecosystems, represents a risk for aquatic organisms and the welfare of humans. This study aimed to determine the antimicrobial resistance rates among riverine Aeromonas spp., taken as representative of the autochthonous microbiota, to evaluate the level of antibacterial resistance in the Tua River (Douro basin). The prevalence and degree of antibiotic resistance was examined using motile aeromonads as a potential indicator of antimicrobial susceptibility for the aquatic environment. Water samples were collected from the middle sector of the river, which is most impacted area by several anthropogenic pressures. Water samples were plated on an Aeromonas-selective agar, with and without antibiotics. The activity of 19 antibiotics was studied against 30 isolates of Aeromonas spp. using the standard agar dilution susceptibility test. Antibiotic resistance rates were fosfomycin (FOS) 83.33%, nalidixic acid (NA) 60%, cefotaxime (CTX) 40%, gentamicin (CN) 26.67%, tobramycin (TOB) 26.67%, cotrimoxazole (SXT) 26.67%, chloramphenicol (C) 16.67%, and tetracycline (TE) 13.33%. Some of the nalidixic acid-resistant strains were susceptible to fluoroquinolones. Multiple resistance was also observed (83.33%). The environmental ubiquity, the natural susceptibility to antimicrobials and the zoonotic potential of Aeromonas spp. make them optimal candidates for studying antimicrobial resistance (AMR) in aquatic ecosystems. Aquatic environments may provide an ideal setting for the acquisition and dissemination of antibiotic resistance because anthropogenic activities frequently impact them. The potential risk of multi- and pan-resistant bacteria transmission between animals and humans should be considered in a “One Health—One World” concept.


Sign in / Sign up

Export Citation Format

Share Document