Protective effect of polysaccharides from Celluclast-assisted extract of Hizikia fusiforme against hydrogen peroxide-induced oxidative stress in vitro in Vero cells and in vivo in zebrafish

2018 ◽  
Vol 112 ◽  
pp. 483-489 ◽  
Author(s):  
Lei Wang ◽  
Jae Young Oh ◽  
Hyun Soo Kim ◽  
WonWoo Lee ◽  
Yongri Cui ◽  
...  
2018 ◽  
Vol 23 (4) ◽  
pp. 301-308 ◽  
Author(s):  
Lei Wang ◽  
Won Woo Lee ◽  
Hye-Won Yang ◽  
Bo Mi Ryu ◽  
Yong Ri Cui ◽  
...  

2019 ◽  
Vol 29 (8) ◽  
pp. 1193-1203 ◽  
Author(s):  
Su-Hyeon Cho ◽  
Soo-Jin Heo ◽  
Hye-Won Yang ◽  
Eun-Yi Ko ◽  
Myeong Seon Jung ◽  
...  

2021 ◽  

Myocardial infarction is a serious representation of cardiovescular disease, MicroRNAs play a role in modifying I/R injury and myocardial infarct remodeling. The present study therefore examined the potential role of miR-187 in cardiac I/R injury and its underlying mechanisms. miR-187 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with miR-187 mimic or inhibitor to confirm the function of miR-187 in H/R. DYRK2 was inhibited or overexpressed in cardiomyocytes H/R models by pretreatment with DYRK2 inhibitor. A myocardium I/R mouse model was established. Circulating levels of miR-187 or DYRK2 was detected by quantitative realtime PCR and protein expression was detected by western blotting. The cell viability in all groups was determined by MTT assay and the apoptosis ratio was detected by flow cytometry after staining with Annexin V-FITC. The effect of miR-187 on cellular ROS generation was examined by DCFH-DA. The level of lipid peroxidation and SOD expression were determined by MDA and SOD assay. The findings indicated that miR-187 may be a possible regulator in the protective effect of H/R-induced cardiomyocyte apoptosis, cellular oxidative stress and leaded to DYRK2 suppression at a posttranscriptional level. Moreover, the improvement of miR-187 on H/R-induced cardiomyocyte injury contributed to the obstruction of DYRK2 expression. In addition, these results identified DYRK2 as the functional downstream target of miR-187 regulated myocardial infarction and oxidative stress.These present work provided the first insight into the function of miR-187 in successfully protect cardiomyocyte both in vivo and in vitro, and such a protective effect were mediated through the regulation of DYRK2 expression.


2016 ◽  
Vol 48 ◽  
pp. 253-264 ◽  
Author(s):  
Pamela Soledad Bustos ◽  
Romina Deza-Ponzio ◽  
Paulina Laura Páez ◽  
Ines Albesa ◽  
José Luis Cabrera ◽  
...  

2020 ◽  
Author(s):  
Ramona Meanti ◽  
Laura Rizzi ◽  
Elena Bresciani ◽  
Laura Molteni ◽  
Vittorio Locatelli ◽  
...  

AbstractHexarelin, a synthetic hexapeptide, protects cardiac and skeletal muscles by inhibiting apoptosis, both in vitro and in vivo. Moreover, evidence suggests that hexarelin could have important neuroprotective bioactivity.Oxidative stress and the generation of free radicals has been implicated in the etiologies of several neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease and multiple sclerosis. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance the formation of other reactive oxygen species.The aim of this study was to examine the inhibitory influence of hexarelin on H2O2-induced apoptosis in Neuro-2A cells, a mouse neuroblastoma cell line. Our results indicate that H2O2 reduced the viability of Neuro-2A cells in a dose-related fashion. Furthermore, H2O2 induced significant changes in the morphology of Neuro-2A cells, reflected in the formation of apoptotic cell bodies, and an increase of nitric oxide (NO) production. Hexarelin effectively antagonized H2O2 oxidative damage to Neuro-2A cells as indicated by improved cell viability, normal morphology and reduced nitrite (NO2−) release. Hexarelin treatment of Neuro-2A cells also reduced mRNA levels of caspases−3 and −7 and those of the pro-apoptotic molecule Bax; by contrast, hexarelin treatment increased anti-apoptotic Bcl-2 mRNA levels. Hexarelin also reduced MAPKs phosphorylation induced by H2O2 and concurrently increased p-Akt protein expression.In conclusion, our results identify several neuroprotective and anti-apoptotic effects of hexarelin. These properties suggest that further investigation of hexarelin as a neuroprotective agent in an investigational and therapeutic context are merited.


2021 ◽  
Author(s):  
Yajun Chen ◽  
Lei Wang ◽  
Tianjia Liu ◽  
Zhidong Qiu ◽  
Ye Qiu ◽  
...  

We investigated the protective effect of PGP against DOX-induced cardiotoxicity in vitro and in vivo. PGP increases H9C2 cell viability and inhibits apoptosis, alleviating DOX-induced myocardial oxidative stress-related cardiotoxicity.


Author(s):  
Rosalia Crupi ◽  
Ernesto Palma ◽  
Rosalba Siracusa ◽  
Roberta Fusco ◽  
Enrico Gugliandolo ◽  
...  

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1231
Author(s):  
Jin Woo Kim ◽  
Eun Hee Jo ◽  
Ji Eun Moon ◽  
Hanvit Cha ◽  
Moon Han Chang ◽  
...  

Various stresses derived from both internal and external oxidative environments lead to the excessive production of reactive oxygen species (ROS) causing progressive intracellular oxidative damage and ultimately cell death. The objective of this study was to evaluate the protective effects of Citrus junos Tanaka peel extract (CE) against oxidative-stress induced the apoptosis of lung cells and the associated mechanisms of action using in vitro and in vivo models. The protective effect of CE was evaluated in vitro in NCI-H460 human lung cells exposed to pro-oxidant H2O2. The preventive effect of CE (200 mg/kg/day, 10 days) against pulmonary injuries following acrolein inhalation (10 ppm for 12 h) was investigated using an in vivo mouse model. Herein, we demonstrated the inhibitory effect of CE against the oxidative stress-induced apoptosis of lung cells under a highly oxidative environment. The function of CE is linked with its ability to suppress ROS-dependent, p53-mediated apoptotic signaling. Furthermore, we evaluated the protective role of CE against apoptotic pulmonary injuries associated with the inhalation of acrolein, a ubiquitous and highly oxidizing environmental respiratory pollutant, through the attenuation of oxidative stress. The results indicated that CE exhibits a protective effect against the oxidative stress-induced apoptosis of lung cells in both in vitro and in vivo models.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
A. N. Karunasiri ◽  
C. M. Senanayake ◽  
H. Hapugaswatta ◽  
N. Jayathilaka ◽  
K. N. Seneviratne

Coconut oil meal, a cheap by-product of coconut oil production, is a rich source of phenolic antioxidants. Many age-related diseases are caused by reactive oxygen species- (ROS-) induced damage to macromolecules such as lipids, proteins, and DNA. In the present study, the protective effect of the phenolic extract of coconut oil meal (CMPE) against macromolecular oxidative damage was evaluated using in vitro and in vivo models. Sunflower oil, bovine serum albumin (BSA), and plasmid DNA were used in the in vitro study, and thiobarbituric acid reactive substances (TBARS), protein carbonyl, and nicked DNA were evaluated as oxidation products. The inhibitory effect of CMPE against H2O2-induced macromolecular damage was evaluated using cultured HEp-2 cells. The results indicate that CMPE inhibits macromolecular damage both in vitro and in vivo. In addition, CMPE regulates redox status of HEp-2 cells under oxidative stress conditions by maintaining higher reduced glutathione levels. There was no significant difference in the expression of glutathione peroxidase in stressed and unstressed cells suggesting that CMPE regulates the cellular oxidative stress responses without affecting the expression of oxidative stress response genes. Oral feeding of Wistar rats with CMPE improves the serum and plasma antioxidant status without causing any toxic effects.


2003 ◽  
Vol 185 (7) ◽  
pp. 2203-2209 ◽  
Author(s):  
Anu Wallecha ◽  
Jason Correnti ◽  
Vincent Munster ◽  
Marjan van der Woude

ABSTRACT OxyR is a DNA binding protein that differentially regulates a cell's response to hydrogen peroxide-mediated oxidative stress. We previously reported that the reduced form of OxyR is sufficient for repression of transcription of agn43 from unmethylated template DNA, which is essential for deoxyadenosine methylase (Dam)- and OxyR-dependent phase variation of agn43. Here we provide evidence that the oxidized form of OxyR [OxyR(ox)] also represses agn43 transcription. In vivo, we found that exogenous addition of hydrogen peroxide, sufficient to oxidize OxyR, did not affect the expression of agn43. OxyR(ox) repressed in vitro transcription but only from an unmethylated agn43 template. The −10 sequence of the promoter and three Dam target sequences were protected in an in vitro DNase I footprint assay by OxyR(ox). Furthermore, OxyR(ox) bound to the agn43 regulatory region DNA with an affinity similar to that for the regulatory regions of katG and oxyS, which are activated by OxyR(ox), indicating that binding at agn43 can occur at biologically relevant concentrations. OxyR-dependent regulation of Ag43 expression is therefore unusual in firstly that OxyR binding at agn43 is dependent on the methylation state of Dam target sequences in its binding site and secondly that OxyR-dependent repression appears to be independent of hydrogen-peroxide mediated oxidative stress and the oxidation state of OxyR.


Sign in / Sign up

Export Citation Format

Share Document