Cytotoxic, antioxidant and antibacterial activities of copper oxide incorporated chitosan-neem seed biocomposites

2019 ◽  
Vol 139 ◽  
pp. 867-878 ◽  
Author(s):  
T. Revathi ◽  
S. Thambidurai
2018 ◽  
Vol 47 (27) ◽  
pp. 9143-9155 ◽  
Author(s):  
N. Bouazizi ◽  
J. Vieillard ◽  
P. Thebault ◽  
F. Desriac ◽  
T. Clamens ◽  
...  

A facile and eco-friendly method was developed to prepare a microporous CuO@Ag0 core–shell with high catalytic and antibacterial activities.


2021 ◽  
Vol 18 (24) ◽  
pp. 1441
Author(s):  
Bambang Heru Budianto ◽  
Rokhmani Rokhmani ◽  
Edi Basuki

The population of the predatory mites Amblyseius deleoni had been decreasing due to continuous use of synthetic pesticides in tea plantations. Therefore, this study aimed to select pesticide-resistant individuals from a wild-type population of A. deleoni and to evaluate whether or not the resistant A. deleoni were still sensible as biological control agents.  We exposed A. deleoni to (propargite), fungicide (copper oxide) and a neem seed extracts. We found that the propargite-resistant predatory mites consumed larvae and nymphs of Tetranychus urticae more than the control (wild type) (P < 0.05).  There was no difference in the number of eggs and adults of T. urticae consumed (P > 0.05). The number of individuals of every stage of T. urticae consumed by copper-oxide resistant A. deleoni was the same (P > 0.05).  In general, there were no changes in food preference in the resistant predators to the 3 of pesticides (P > 0.05). There were slight differences on the pattern of predatory capacity among the resistant predators to the three pesticides.  Although the predators are resistant to the 3 pesticides, it took longer to consume their prey in comparison to the control.  These findings suggested that pesticide-resistant A. deleoni were able to maintain their functions as a biocontrol agent. HIGHLIGHTS The effectiveness of Amblyseius deleoni as a natural predators have decreased due to continuous uses of synthetic pesticides to control pests and diseases on tea plantations Continuous exposure to propargite, CuO and neem seed extracts induced the predatory mites deleoni to develop resistance No significant changes in feeding preference and the predatory capacity of the mite deleoni on T. urticae after becoming resistant to pesticides Exposures deleoni to pesticides may have induced heritable epigenetic changes permanently or just reversible phenotypes without changing the DNA sequence


2017 ◽  
Vol 33 (8) ◽  
pp. 889-896 ◽  
Author(s):  
Abdullah A. Alswat ◽  
Mansor Bin Ahmad ◽  
Mohd Zobir Hussein ◽  
Nor Azowa Ibrahim ◽  
Tawfik A. Saleh

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yuvaraj Haldorai ◽  
Jae-Jin Shim

Chitosan (CS) anchored copper oxide (CuO) hybrid material was prepared by chemical precipitation method. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the formation of CS-CuO hybrid. Transmission electron microscopy (TEM) analysis showed the immobilization of CuO nanoparticles on the surface of CS. The hybrid was also characterized by thermogravimetric analysis (TGA) and zeta potential. The hybrid exhibited high photocatalytic activity as evident from the degradation of methylene blue (MB) dye. The result revealed substantial degradation of the MB dye (84%) under UV-light illumination. The antibacterial activity of hybrid againstEscherichia coliwas examined by colony forming units. It was proved that the CS encapsulated CuO hybrid exhibited excellent antibacterial activity.


2020 ◽  
Author(s):  
Richard B Asamoah ◽  
Abu Yaya ◽  
Bismark Mensah ◽  
Pascal Nbelayim ◽  
Vitus Apalangya ◽  
...  

Inorganic nano-metal oxides can be effective alternatives to drug resistant organic antibiotics due to their broad spectrum antimicrobial activity against pathogenic and mutagenic gram-negative and positive bacteria.  In this study, zinc and copper oxides (ZnO and CuO) were synthesized using a facile wet chemical method. The oxide nanoparticles were characterized using X-ray diffraction (XRD), UV-Vis spectrometer (UV-Vis), Fourier Transformed Infra-red spectrometer and Transmission electron microscopy (TEM). The antibacterial activities of the nanoparticles were investigated against e. coli and s. aureus using the disk diffusion and microdilution tests. The XRD analysis revealed that both zinc and copper oxide nanoparticles were purely crystalline. The TEM micrographs showed that copper oxide nanoparticles assumed a nanorod shape of average length of 100 nm.  Whiles zinc oxide nanoparticles were spherical of average diameter of 15 nm. The FTIR results showed that the nanoparticles were free of impurities and organic surfactants. The optical band gaps of CuO and ZnO according to UV-Vis analysis were respectively 2.63 eV and 3.22 eV. According to the antibacteria tests, the minimum inhibition concentration (MIC) of CuO against e. coli and s. aureus were correspondingly 1mg/ml and 0.25 mg/ml whiles it was 0.1mg/ml for ZnO against s. aureus but ZnO produced no inhibition against e. coli. With the microdilution test, both nanoparticles exhibited activity against both bacteria species at all varying concentrations. CuO had an antibacteria efficiency of 80 to 97% and 85 to 99% for e. coli and s. aureus respectively. The efficiency of ZnO were 20 to 90% and 50 to 89% for e. coli and s. aureus accordingly. The results concluded that CuO had higher antibacteria activity as compared to ZnO.


2020 ◽  
Vol 10 (03) ◽  
pp. 378-382
Author(s):  
Jenan Hussien Taha ◽  
Nada Khudair Abbas ◽  
Azhar A. F. Al-Attraqchi

In this article, a simple new technique for the green synthesis of copper oxide nanoparticles (CuO NPs) using peroxidases oxidoreductases (POX) enzyme extracted from fig leaves for antifungal and antibacterial activities has been reported. Subsequently, a comprehensive investigation of the structural, optical, and morphological properties of the synthesized CuO NPs was elucidated, using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Electrodiagnostic (EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analysis techniques. Specifically, the resultant nanoparticles are spherical with a diameter ranging from 28–68. CuO NPs were further tested for their antifungal activity against Candida and Aspergillus species, while the antibacterial activity was screened in contradiction of pathogenic bacterial strains namely gram-positive Staphylococcus aureus and gram-negative Asinobacterial species. The present study reveals a convenient use of POX fig leaves extract as fuel, for the well-organized synthesis of CuO NPs via green synthesis technique to acquire considerably active antifungal and antibacterial materials.


Sign in / Sign up

Export Citation Format

Share Document