Co-immobilization of two-component hydroxylase monooxygenase by functionalized magnetic nanoparticles for preserving high catalytic activity and enhancing enzyme stabilty

2020 ◽  
Vol 164 ◽  
pp. 3163-3170
Author(s):  
Junya Liao ◽  
Shanshan Han ◽  
Xianglai Li ◽  
Jie He ◽  
Francesco Secundo ◽  
...  
Author(s):  
Alejandro Villacampa ◽  
Luis Duque ◽  
Olga Juanes ◽  
Francisco Javier Palomares ◽  
Pilar Herrasti ◽  
...  

AbstractThe use of magnetic nanoparticles in C–C coupling reactions enables the facile recovery of the catalyst under environmentally friendly conditions. Herein, the synthesis of Pd/Fe@Fe3O4 nanoparticles by the reduction of Pd2+ and oxidation of Fe on the surface of preformed Fe@Fe3O4 is reported. The nanoparticles were characterized using a variety of analytical techniques (transmission electron microscopy, Mössbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction) to determine their size, structure, and chemical composition. The catalytic efficiency of these nanoparticles in classical Suzuki–Miyaura coupling reactions was investigated. The nanoparticles achieved high catalytic activity with the application of local heating by an alternating magnetic field. An investigation was conducted at identical temperatures to compare global heating with the application of an external magnetic field; magnetic heating demonstrated excellent substrate conversion in lesser time and at a lower temperature. The catalyst could also be recycled and reused three times, with ~ 30% decrease in the substrate conversion, which is most likely due to the agglomeration of the Pd nanoparticles or poisoning of the Pd catalyst. This approach, which takes advantage of the catalytic activity and magnetic susceptibility of magnetic nanoparticles, can be applied to several organic transformations to improve their efficiency. Graphical abstract


Catalysts ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 703 ◽  
Author(s):  
Carla A. Orge ◽  
O. Salomé G. P. Soares ◽  
Patrícia S. F. Ramalho ◽  
M. Fernando R. Pereira ◽  
Joaquim L. Faria

Magnetic nanoparticles (MNP) composed of iron oxide (or other metal–FeO cores) coated with carbon produced by chemical vapour decomposition (CVD) were used in the photocatalytic ozonation of oxamic acid (OMA) which we selected as a model pollutant. The incorporation of Ag and Cu on FeO enhanced the efficiency of the process. The carbon phase significantly increased the photocatalytic activity towards the conversion of OMA. As for the synthesis process, raising the temperature of CVD improved the performance of the produced photocatalysts. The obtained results suggested that the carbon phase is directly related to high catalytic activity. The most active photocatalyst (C@FeO_CVD850) was used in the removal of other compounds (dyes, industrial pollutants and herbicides) from water and high mineralization levels were attained. This material was also revealed to be stable during reutilisation.


RSC Advances ◽  
2017 ◽  
Vol 7 (27) ◽  
pp. 16709-16720 ◽  
Author(s):  
Sang Hoon Kim ◽  
Joonphil Choi ◽  
Jaecheol Yun ◽  
Eun-wook Jeong

For the production of CH4 from CO hydrogenation, a hybrid foam with high catalytic activity and strong magnetic bonding ability was fabricated by electrospraying and co-sintering NdNiAl and NdFeB nanoparticles over a Fe foam.


MRS Advances ◽  
2020 ◽  
Vol 5 (57-58) ◽  
pp. 2961-2972
Author(s):  
P.C. Meléndez-González ◽  
E. Garza-Duran ◽  
J.C. Martínez-Loyola ◽  
P. Quintana-Owen ◽  
I.L. Alonso-Lemus ◽  
...  

In this work, low-Pt content nanocatalysts (≈ 5 wt. %) supported on Hollow Carbon Spheres (HCS) were synthesized by two routes: i) colloidal conventional polyol, and ii) surfactant-free Bromide Anion Exchange (BAE). The nanocatalysts were labelled as Pt/HCS-P and Pt/HCS-B for polyol and BAE, respectively. The physicochemical characterization of the nanocatalysts showed that by following both methods, a good control of chemical composition was achieved, obtaining in addition well dispersed nanoparticles of less than 3 nm TEM average particle size (d) on the HCS. Pt/HCS-B contained more Pt0 species than Pt/HCS-P, an effect of the synthesis method. In addition, the structure of the HCS remains more ordered after BAE synthesis, compared to polyol. Regarding the catalytic activity for the Oxygen Reduction Reaction (ORR) in 0.5 M KOH, Pt/HCS-P and Pt/HCS-B showed a similar performance in terms of current density (j) at 0.9 V vs. RHE than the benchmark commercial 20 wt. % Pt/C. However, Pt/HCS-P and Pt/HCS-B demonstrated a 6 and 5-fold increase in mass catalytic activity compared to Pt/C, respectively. A positive effect of the high specific surface area of the HCS and its interactions with metal nanoparticles and electrolyte, which promoted the mass transfer, increased the performance of Pt/HCS-P and Pt/HCS-B. The high catalytic activity showed by Pt/HCS-B and Pt/HCS-P for the ORR, even with a low-Pt content, make them promising cathode nanocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC).


2019 ◽  
Author(s):  
Du Sun ◽  
yunfei wang ◽  
Kenneth Livi ◽  
chuhong wang ◽  
ruichun luo ◽  
...  

<div> <p>The synthesis of alloys with long range atomic scale ordering (ordered intermetallics) is an emerging field of nanochemistry. Ordered intermetallic nanoparticles are useful for a wide variety of applications such as catalysis, superconductors, and magnetic devices. However, the preparation of nanostructured ordered intermetallics is challenging in comparison to disordered alloys, hindering progress in materials development. We report a process for converting colloidally synthesized ordered intermetallic PdBi<sub>2</sub> to ordered intermetallic Pd<sub>3</sub>Bi nanoparticles under ambient conditions by an electrochemically induced phase transition. The low melting point of PdBi<sub>2</sub> corresponds to low vacancy formation energies which enables the facile removal of the Bi from the surface, while simultaneously enabling interdiffusion of the constituent atoms via a vacancy diffusion mechanism under ambient conditions. The resulting phase-converted ordered intermetallic Pd<sub>3</sub>Bi exhibits 11x and 3.5x higher mass activty and high methanol tolerance for the oxygen reduction reaction compared to Pt/C and Pd/C, respectively,which is the highest reported for a Pd-based catalyst, to the best of our knowledge. These results establish a key development in the synthesis of noble metal rich ordered intermetallic phases with high catalytic activity, and sets forth guidelines for the design of ordered intermetallic compounds under ambient conditions.</p> </div>


2015 ◽  
Vol 21 (42) ◽  
pp. 6038-6054 ◽  
Author(s):  
Dragoș Gudovan ◽  
Paul Balaure ◽  
Dan Mihăiescu ◽  
Adrian Fudulu ◽  
Bogdan Purcăreanu ◽  
...  

Author(s):  
Mohsen Nikoorazm ◽  
Maryam Khanmoradi ◽  
Masoumeh Sayadian

Introduction:: MCM-41 was synthesized using the sol-gel method. Then two new transition metal complexes of Nickel (II) and Vanadium (IV), were synthesized by immobilization of adenine (6-aminopurine) into MCM-41 mesoporous. The compounds have been characterized by XRD, TGA, SEM, AAS and FT-IR spectral studies. Using these catalysts provided an efficient and enantioselective procedure for oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using hydrogen peroxide at room temperature. Materials and Methods:: To a solution of sulfide or thiol (1 mmol) and H2O2 (5 mmol), a determined amount of the catalyst was added. The reaction mixture was stirred at room temperature for the specific time under solvent free conditions. The progress of the reaction was monitored by TLC using n-hexane: acetone (8:2). Afterwards, the catalyst was removed from the reaction mixture by centrifugation and, then, washed with dichloromethane in order to give the pure products. Results:: All the products were obtained in excellent yields and short reaction times indicating the high activity of the synthesized catalysts. Besides, the catalysts can be recovered and reused for several runs without significant loss in their catalytic activity. Conclusion:: These catalytic systems furnish the products very quickly with excellent yields and VO-6AP-MCM-41 shows high catalytic activity compared to Ni-6AP-MCM-41.


1979 ◽  
Vol 44 (4) ◽  
pp. 1015-1022 ◽  
Author(s):  
Viliam Múčka

The catalytic properties of two-component catalyst nickel oxide-cadmium oxide with the proportions of the components covering the whole composition region 0-100% were examined by studying the decomposition of hydrogen peroxide in aqueous solution on it. In the range 0-25 mol.% CdO, cadmium oxide is found to affect infavourably the ability of nickel oxide to chemisorb oxygen. The amount of the chemisorbed oxygen increases several times on gamma irradiation of the samples. The effect of cadmium oxide on the catalytic activity of the system shows up in fresh samples only indirectly via the changed amount of the oxygen chemisorbed. In older samples the initial catalytic activity of the system is changed, which can be explained based on the concept of bivalent catalytic centres in terms of the co-action of the catalytic centres of the two oxides, which are in equilibrium. The irradiation of the system under study speeds up the processes leading to the establishing of this equilibrium which is thermally very stable, and results in a substantial increase of the catalytic activity of the samples investigated.


Sign in / Sign up

Export Citation Format

Share Document