Genome-wide identification of Pistacia R2R3-MYB gene family and function characterization of PcMYB113 during autumn leaf coloration in Pistacia chinensis

Author(s):  
Xiehai Song ◽  
Qinsong Yang ◽  
Yong Liu ◽  
Jinjin Li ◽  
Xiaochao Chang ◽  
...  
2021 ◽  
Author(s):  
Yuan Yuan ◽  
Xiping Yang ◽  
Mengfang Feng ◽  
Hongyan Ding ◽  
Khan Muhammad Tahir ◽  
...  

Abstract Background: Sugarcane (Saccharum) is the most important sugar crop in the world. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. Results: A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genome and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which MYB43, MYB53, MYB65, MYB78, and MYB99 were validated by qPCR. Allelic expression dominance in the stem was more significant than that in the leaf, implying the differential expression of alleles may be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. Conclusions: A Genome-wide expression analysis demonstrated that SsMYB genes were involved in stem development and stress response. This study largely contributed to understanding the extent to which MYB transcription factors investigate regulatory mechanisms and functional divergence in sugarcane.


2019 ◽  
Vol 20 (19) ◽  
pp. 4847 ◽  
Author(s):  
Wenjun Sun ◽  
Zhaotang Ma ◽  
Hui Chen ◽  
Moyang Liu

As an important nongrain crop, the growth and yield of potato (Solanum tuberosum L.) is often affected by an unfavorable external environment in the process of cultivation. The MYB family is one of the largest and most important gene families, participating in the regulation of plant growth and development and response to abiotic stresses. Several MYB genes in potato that regulate anthocyanin synthesis and participate in abiotic stress responses have been identified. To identify all Solanum tuberosum L. MYB (StMYB) genes involved in hormone or stress responses to potentially regulate potato growth and development, we identified the MYB gene family at the genome-wide level. In this work, 158 StMYB genes were found in the potato genome. According to the amino acid sequence of the MYB domain and gene structure, the StMYB genes were divided into R2R3-MYB and R1R2R3-MYB families, and the R2R3-MYB family was divided into 20 subgroups (SGs). The expression of 21 StMYB genes from different SGs in roots, stems, leaves, flowers, shoots, stolons, young tubers, and mature tubers was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The expression patterns of StMYB genes in potatoes treated with abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellin acid 3 (GA3), NaCl, mannitol, and heat were also measured. We have identified several potential candidate genes that regulate the synthesis of potato flavonoids or participate in hormone or stress responses. This work provides a comprehensive understanding of the MYB family in potato and will lay a foundation for the future investigation of the potential functions of StMYB genes in the growth and development of potato.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fangwei Zhou ◽  
Yingnan Chen ◽  
Huaitong Wu ◽  
Tongming Yin

The MYB transcription factor (TF) family is one of the largest plant transcription factor gene family playing vital roles in plant growth and development, including defense, cell differentiation, secondary metabolism, and responses to biotic and abiotic stresses. As a model tree species of woody plants, in recent years, the identification and functional prediction of certain MYB family members in the poplar genome have been reported. However, to date, the characterization of the gene family in the genome of the poplar’s sister species willow has not been done, nor are the differences and similarities between the poplar and willow genomes understood. In this study, we conducted the first genome-wide investigation of the R2R3 MYB subfamily in the willow, identifying 216 R2R3 MYB gene members, and combined with the poplar R2R3 MYB genes, performed the first comparative analysis of R2R3 MYB genes between the poplar and willow. We identified 81 and 86 pairs of R2R3 MYB paralogs in the poplar and willow, respectively. There were 17 pairs of tandem repeat genes in the willow, indicating active duplication of willow R2R3 MYB genes. A further 166 pairs of poplar and willow orthologs were identified by collinear and synonymous analysis. The findings support the duplication of R2R3 MYB genes in the ancestral species, with most of the R2R3 MYB genes being retained during the evolutionary process. The phylogenetic trees of the R2R3 MYB genes of 10 different species were drawn. The functions of the poplar and willow R2R3 MYB genes were predicted using reported functional groupings and clustering by OrthoFinder. Identified 5 subgroups in general expanded in woody species, three subgroups were predicted to be related to lignin synthesis, and we further speculate that the other two subgroups also play a role in wood formation. We analyzed the expression patterns of the GAMYB gene of subgroup 18 (S18) related to pollen development in the male flower buds of poplar and willow at different developmental stages by qRT-PCR. The results showed that the GAMYB gene was specifically expressed in the male flower bud from pollen formation to maturity, and that the expression first increased and then decreased. Both the specificity of tissue expression specificity and conservation indicated that GAMYB played an important role in pollen development in both poplar and willow and was an ideal candidate gene for the analysis of male flower development-related functions of the two species.


DNA Research ◽  
2016 ◽  
Vol 23 (2) ◽  
pp. 101-114 ◽  
Author(s):  
Bisi Chen ◽  
Fangfang Niu ◽  
Wu-Zhen Liu ◽  
Bo Yang ◽  
Jingxiao Zhang ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0239275
Author(s):  
Boas Pucker ◽  
Ashutosh Pandey ◽  
Bernd Weisshaar ◽  
Ralf Stracke

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuan Yuan ◽  
Xiping Yang ◽  
Mengfan Feng ◽  
Hongyan Ding ◽  
Muhammad Tahir Khan ◽  
...  

Abstract Background Sugarcane (Saccharum) is the most critical sugar crop worldwide. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. Results A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genomic sequence and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which RT-qPCR validated MYB43, MYB53, MYB65, MYB78, and MYB99. Allelic expression dominance analysis implied the differential expression of alleles might be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. Conclusions This is the first report on genome-wide analysis of the MYB gene family in sugarcane. SsMYBs probably played an essential role in stem development and the adaptation of various stress conditions. The results will provide detailed insights and rich resources to understand the functional diversity of MYB transcription factors and facilitate the breeding of essential traits in sugarcane.


2020 ◽  
Author(s):  
Chunsheng Xiao ◽  
Yong Jia ◽  
Calum Watt ◽  
Wenshuai Chen ◽  
Yujuan Zhang ◽  
...  

AbstractMYB transcription factors (TFs) represents one of the largest TF families in plants. In this study, we performed genome-wide MYB-domain screening and identified a total of 997 MYBs in wheat (Triticum aestivum), among which 445 were 2-domain MYBs (R2R3-MYBs) that were clustered into 15 subgroups with varied conservation profiles. Homologous genes were highly conserved across the three subgenomes, with minor variations contributed by segmental duplications. Tandem and proximal gene duplications have contributed significantly to the expansion of the wheat Myb gene family. Furthermore, comprehensive transcriptome profiling of R2R3-Myb genes in 61 different tissue and time point samples revealed a clear pattern of temporal and spatial variations within six expression groups. The comprehensive genomic and transcriptional analyses provided valuable insights into the evolution and biological functions of R2R3-Myb genes in wheat. They would serve as a useful guide to further investigate the potential agronomic traits controlled by this large TF family.


Sign in / Sign up

Export Citation Format

Share Document