Hydrate phase transition kinetics from Phase Field Theory with implicit hydrodynamics and heat transport

2014 ◽  
Vol 29 ◽  
pp. 263-278 ◽  
Author(s):  
Bjørn Kvamme ◽  
Muhammad Qasim ◽  
Khuram Baig ◽  
Pilvi-Helinä Kivelä ◽  
Jordan Bauman
2021 ◽  
Vol 11 (9) ◽  
pp. 4124
Author(s):  
Mojdeh Zarifi ◽  
Bjørn Kvamme ◽  
Tatiana Kuznetsova

As in any other phase transition, hydrate phase transition kinetics involves an implicit coupling of phase transition thermodynamic control and the associated dynamics of mass and heat transport. This work provides a brief overview of certain selected hydrate film growth models with an emphasis on analyzing the hydrate phase transition dynamics. Our analysis is based on the fundamental properties of hydrate and hydrate/liquid water interfaces derived from molecular modeling. We demonstrate that hydrate phase transitions involving water-dominated phases are characterized by heat transport several orders of magnitude faster than mass transport, strongly suggesting that any hydrate phase transition kinetic models based on heat transport will be entirely incorrect as far as thermodynamics is concerned. We therefore propose that theoretical studies focusing on hydrate nucleation and growth should be based on concepts that incorporate all the relevant transport properties. We also illustrate this point using the example of a fairly simplistic kinetic model, that of classical nucleation theory (CNT), modified to incorporate new models for mass transport across water/hydrate interfaces. A novel and consistent model suitable for the calculation of enthalpies is also discussed and appropriate calculations for pure components and relevant mixtures of carbon dioxide, methane, and nitrogen are demonstrated. This residual thermodynamic model for hydrate is consistent with the free energy model for hydrate and ensures that our revised CNT model is thermodynamically harmonious.


2003 ◽  
Vol 68 (8) ◽  
pp. 1407-1419 ◽  
Author(s):  
Claudio Fontanesi ◽  
Roberto Andreoli ◽  
Luca Benedetti ◽  
Roberto Giovanardi ◽  
Paolo Ferrarini

The kinetics of the liquid-like → solid-like 2D phase transition of adenine adsorbed at the Hg/aqueous solution interface is studied. Attention is focused on the effect of temperature on the rate of phase change; an increase in temperature is found to cause a decrease of transition rate.


2002 ◽  
Vol 88 (20) ◽  
Author(s):  
László Gránásy ◽  
Tamás Börzsönyi ◽  
Tamás Pusztai

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke Postma ◽  
Graham White

Abstract To obtain a first order phase transition requires large new physics corrections to the Standard Model (SM) Higgs potential. This implies that the scale of new physics is relatively low, raising the question whether an effective field theory (EFT) description can be used to analyse the phase transition in a (nearly) model-independent way. We show analytically and numerically that first order phase transitions in perturbative extensions of the SM cannot be described by the SM-EFT. The exception are Higgs-singlet extension with tree-level matching; but even in this case the SM-EFT can only capture part of the full parameter space, and if truncated at dim-6 operators, the description is at most qualitative. We also comment on the applicability of EFT techniques to dark sector phase transitions.


2007 ◽  
Vol 22 (06) ◽  
pp. 1265-1278
Author(s):  
ABOUZEID M. SHALABY ◽  
S. T. EL-BASYOUNY

We established a resummed formula for the effective potential of [Formula: see text] scalar field theory that can mimic the true effective potential not only at the critical region but also at any point in the coupling space. We first extend the effective potential from the oscillator representation method, perturbatively, up to g3 order. We supplement perturbations by the use of a resummation algorithm, originally due to Kleinert, Thoms and Janke, which has the privilege of using the strong coupling as well as the large coupling behaviors rather than the conventional resummation techniques which use only the large order behavior. Accordingly, although the perturbation series available is up to g3 order, we found a good agreement between our resummed effective potential and the well-known features from constructive field theory. The resummed effective potential agrees well with the constructive field theory results concerning existing and order of phase transition in the absence of an external magnetic field. In the presence of the external magnetic field, as in magnetic systems, the effective potential shows nonexistence of phase transition and gives the behavior of the vacuum condensate as a monotonic increasing function of J, in complete agreement with constructive field theory methods.


Sign in / Sign up

Export Citation Format

Share Document