scholarly journals CO2 plume evolution in a depleted natural gas reservoir: Modeling of conformance uncertainty reduction over time

2020 ◽  
Vol 97 ◽  
pp. 103026
Author(s):  
Christine Doughty ◽  
Curtis M. Oldenburg
Author(s):  
Guo Yu ◽  
Haitao Li ◽  
Yanru Chen ◽  
Linqing Liu ◽  
Chenyu Wang ◽  
...  

AbstractQuantifying natural gas production risk can help guide natural gas exploration and development in Carboniferous gas reservoirs. In this study, the Monte Carlo probability method is used to obtain the probability distribution and growth curve of each production risk factor and production in a Carboniferous gas reservoir in eastern Sichuan. In addition, the fuzzy comprehensive evaluation method is used to conduct the sensitivity analysis of the risk factors, and the natural gas production and realization probability under different risk factors are obtained. The research results show that: (1) the risk factor–production growth curve and probability distribution are calculated by the Monte Carlo probability method. The average annual production under the stable production stage under different realization probabilities is obtained. The maximum probability range of annual production is $$\left( {43.43 - 126.35} \right) \times 10^{8} {\text{m}}^{3} /{\text{year}}$$ 43.43 - 126.35 × 10 8 m 3 / year , and the probability range is 14.59–92.88%. (2) The risk factor sensitivity analysis is significantly affected by the probability interval. In the entire probability interval, the more sensitive risk factors are the average production of the kilometer-deep well (D) and the production rate in the stable production stage (A). During the exploration and development of natural gas, these two risk factors can be adjusted to increase production.


Author(s):  
Ned Augenblick ◽  
Matthew Rabin

Abstract When a Bayesian learns new information and changes her beliefs, she must on average become concomitantly more certain about the state of the world. Consequently, it is rare for a Bayesian to frequently shift beliefs substantially while remaining relatively uncertain, or, conversely, become very confident with relatively little belief movement. We formalize this intuition by developing specific measures of movement and uncertainty reduction given a Bayesian’s changing beliefs over time, showing that these measures are equal in expectation and creating consequent statistical tests for Bayesianess. We then show connections between these two core concepts and four common psychological biases, suggesting that the test might be particularly good at detecting these biases. We provide support for this conclusion by simulating the performance of our test and other martingale tests. Finally, we apply our test to data sets of individual, algorithmic, and market beliefs.


2021 ◽  
Vol 135 (4) ◽  
pp. 36-39
Author(s):  
B. Z. Kazymov ◽  
◽  
K. K. Nasirova ◽  

A method is proposed for determining the distribution of reservoir pressure over time in a nonequilibrium-deformable gas reservoir in the case of real gas flow to the well under different technological conditions of well operation, taking into account the real properties of the gas and the reservoir.


1971 ◽  
Vol 9 (3) ◽  
pp. 496
Author(s):  
Robert C. Muir

The Natural Gas Industry is highly competitive and once a gas reservoir is discovered the various producers are anxious to enter into Gas Purchase Contracts. The contracts are with different purchasers and on different terms giving rise to split stream deliveries - there would never be any split stream problems if all producers made simultaneous deliveries to one or more purchasers in exactly the same volumes at exactly the same price. This article examines the position of the producers in the gas reservoir in the absence of an agreement and then discusses different contractual methods which the producers may use to resolve the conflict between the Doctrine of Correlative Rights and the Rule of Capture, such as gas market sharing contracts, cash adjustments, gas balancing schemes and deferred production agreements. To further complicate the problems of 'the producer in dealing with split sales of gas, the lessee-producer must keep in mind the interests of the lessor-royalty owner. The article concludes with a consideration of the interest of the royalty owner in the prepayment received by the producer and in the price for which the producer is selling the gas.


2021 ◽  
Vol 73 (08) ◽  
pp. 63-64
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper OTC 30732, “Economic Feasibility Study of Several Usage Alternatives for a Stranded Offshore Gas Reservoir,” by Khoi Viet Trinh, SPE, and Rouzbeh G. Moghanloo, SPE, University of Oklahoma, prepared for the 2020 Offshore Technology Conference, originally scheduled to be held in Houston, 4–7 May. The paper has not been peer reviewed. Copyright 2020 Offshore Technology Conference. Reproduced by permission. This paper compares economics of a floating liquefied natural gas (FLNG) project with those of an onshore LNG plant and gas-to-wire (GTW) processes. Sensitivity analyses and tornado charts are used to evaluate the importance of various uncertain parameters associated with FLNG construction and operation. This study will be helpful for future considerations in using FLNG to convert offshore gas reservoirs previously considered stranded into economically viable resources. The results from this economic model can play a key role in the future of the natural gas industry and energy market in West Africa. Assumptions Before presenting different economic scenarios, the following assumptions must be established: * The pipeline will have the correct diameter, pressure rating, and metallurgy to transport produced gas. Only the pipe length will be considered a variable. * Operating expenses (OPEX) of both onshore LNG and FLNG will be the same. Realistically, however, OPEX of FLNG will be different from that of onshore LNG. * A subsidy from the Nigerian government has been obtained for the onshore LNG plant. * The electricity price is assumed to be $0.25/kWh. * An assumed upstream cost of $2/Mscf to cover onshore LNG gas pretreatment is assumed. * The onshore LNG plant and FLNG will have the same lifespan. However, in reality, availability of FLNG can be lower than that of onshore LNG. Pricing Models FNLG. Because of the relative recency of FNLG, few pricing models have been readily available. For the complete paper, Shell’s Prelude project is the basis for pricing of FLNG. Prelude costs averaged out to approximately $14 billion, which will be used as the cost of the facility for the FLNG scenario in the economic analysis.


Sign in / Sign up

Export Citation Format

Share Document